
Abstract. The graph is called equitably k-colorable if the vertex set of the

graph can be partitioned into k non empty independent sets V1, V2, . . . , Vk such

that |Vi| − |Vj | ≤ 1, for every i and j. The smallest integer k for which the

graph G is equitably k- colorable is called the equitable chromatic number of

graph G and is denoted by χe(G). If the connected graph G is neither a

complete graph nor an odd cycle then the Equitable Coloring Conjecture (ECC)

states that χe(G) ≤ 4(G). In this work we investigate the equitable chromatic

number of some cycle related graphs like middle graph, shadow graph and

splitting graph of cycle.

Keywords: Equitable coloring, Equitable chromatic number, Middle graph,

Shadow graph, Splitting graph.
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1. Introduction

We begin with finite, connected, simple and undirected graph with vertex set V (G)

and edge set E(G). For any undefined term in graph theory we refer to Bondy and

Murty [1]. A proper k-coloring of a graphG is a function c : V (G)→ {1, 2, ..., k} such

that c(u) 6= c(v) for all uv ∈ E(G). The chromatic number χ(G) is the minimum

number k for which G admits proper k-coloring. There are many variants of proper

coloring like b-coloring, total coloring, dominator coloring, equitable coloring etc.

The present work is intended to report some investigations on equitable coloring of

graph.

The graph G is called equitably k-colorable if the vertex set of G can be partitioned

into k non empty independent sets V1, V2, . . . , Vk such that |Vi|−|Vj| ≤ 1, for every
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i and j. The smallest integer k for which G is equitably k- colorable is called the

equitable chromatic number of G and is denoted by χe(G). If the connected graph G

is neither a complete graph nor an odd cycle then the Equitable Coloring Conjecture

(ECC) states that χe(G) ≤ 4(G) [8, 6].

The notion of equitable coloring is first introduced by Meyer [8]. The equitable

respectively. The equitable coloring of graph products is discussed in [4].

Proposition 1.1. [5] If G and G′ are simple graphs on the same set of vertices and

E(G) ⊆ E(G′), then χe(G) ≤ χe(G
′).

Proposition 1.2. [3] If G contains a clique of order n then χ(G) ≥ n.

Proposition 1.3. [8] Since an equitable coloring is a proper coloring,

χe(G) ≥ χ(G)

2. Main Results

Definition 2.1. The middle graph M(G) of a graph G is the graph whose vertex

set V (G) ∪ E(G) in which two vertices are adjacent if and only if either they are

adjacent edges of G or one is a vertex of G and the other is an edge incident on it.

Theorem 2.2. χe(M(Cn)) = 3, for all n.

Proof. Let V (Cn) = {v1, v2, . . . , vn} and E(Cn) = {e1, e2, . . . , en} where ei = vivi+1;

1 ≤ i ≤ n − 1 and en = vnv1. By the definition of middle graph, V (M(Cn)) =

V (Cn)∪E(Cn) and E(M(Cn)) = {viei; 1 ≤ i ≤ n}∪{eivi+1; 1 ≤ i ≤ n−1}∪{env1}∪
{eiei+1; 1 ≤ i ≤ n− 1} ∪ {ene1}. Thus |V (M(Cn))| = 2n and |E(M(Cn))| = 3n.

As M(Cn) contains a clique of order 3, χ(M(Cn)) ≥ 3 according to Proposition

1.2 and so,

χe(M(Cn)) ≥ 3. (1)

Case 1: when n ≡ 0(mod 3):

Consider the color function c : V (M(Cn))→ N as

c(v3k) = c(e3k−2) = 1; c(v3k−1) = c(e3k) = 3; c(v3k−2) = c(e3k−1) = 2 where
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k = 1, 2, . . . , n
3
.

Now, partition the vertex set V (M(Cn)) as

V1 = {e1, e4, . . . , en−2, v3, v6, v9, . . . , vn},
V2 = {e2, e5, e8, . . . , en−1, v1, v4, v7, . . . , vn−2},
V3 = {e3, e6, e9, . . . , en, v2, v5, v8, . . . , vn−1}.

Clearly, V1, V2 and V3 are independent sets of M(Cn). Also, |V1|=|V2|=|V3|=2n
3

.

Thus, χe(M(Cn)) ≤ 3.

Case 2: when n ≡ 1(mod 3):

Consider the color function c : V (M(Cn))→ N as

c(vn) = 1, c(en) = 2, c(v1) = 3, c(v3k+1) = 2; k = 1, 2, . . . , n−4
3

.

c(v3k) = c(e3k−2) = 1; c(e3k−1) = 2; c(e3k) = c(v3k−1) = 3; k = 1, 2, . . . , n−1
3

.

Now, partition the vertex set V (M(Cn)) as

V1 = {e1, e4, e7, . . . , en−3, v3, v6, v9, . . . , vn−1, vn},
V2 = {e2, e5, e8, . . . , en−2, en, v4, v7, v10, . . . , vn−3},
V3 = {e3, e6, e9, . . . , en−1, v1, v2, v5, v8, . . . , vn−2}.

Now, |V1| = n−1
3

+ n−1
3

+ 1 = 2n+1
3

, |V2| = n−1
3

+ 1 + n−4
3

= 2n−2
3

, and

|V3| = n−1
3

+ 1 + n−1
3

= 2n+1
3

.

Clearly, V1, V2 and V3 are independent sets of M(Cn).

Also, |V1|=|V3| and |V1| − |V2| = |V2| − |V3| = 2n+1
3
− (2n−2

3
) = 1. It holds the

inequality |Vi| − |Vj| ≤ 1, for every i and j. Thus, χe(M(Cn)) ≤ 3.

Case 3: when n ≡ 2(mod 3):

Consider the color function c : V (M(Cn))→ N as

c(v1) = 3; c(e3k−2) = 1; c(e3k−1) = 2; c(v3k−1) = 3 where k = 1, 2, . . . , n+1
3

.

c(v3k) = 1; c(v3k+1) = 2; c(e3k) = 3 where k = 1, 2, . . . , n−2
3

.

Now, partition the vertex set V (M(Cn)) as

V1 = {e1, e4, e7, . . . , en−1, v3, v6, v9, . . . , vn−2},
V2 = {e2, e5, e8, . . . , en, v4, v7, v10, . . . , vn−1},
V3 = {e3, e6, e9, . . . , en−2, v1, v2, v5, v8, . . . , vn}.

Now, |V1| = n+1
3

+ n−2
3

+ 1 = 2n−1
3

, |V2| = n+1
3

+ n−2
3

= 2n−1
3

, and

|V3| = n−2
3

+ 1 + n+1
3

= 2n+2
3

.
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Clearly, V1, V2 and V3 are independent sets of M(Cn).

Also, |V1|=|V2| and |V1| − |V3| = |V2| − |V3| = 2n−1
3
− (2n+2

3
) = 1. It holds the

inequality |Vi| − |Vj| ≤ 1, for every i and j. Thus, χe(M(Cn)) ≤ 3.

Thus,

χe(M(Cn)) ≤ 3, for all n. (2)

Therefore from (1) and (2) we get, χe(M(Cn)) = 3. �

Definition 2.3. The shadow graph D2(G) of a connected graph G is constructed

by taking two copies of G, say G′ and G′′. Join each vertex u′ in G′ to the

neighbors of the corresponding vertex u′′ in G′′.

Theorem 2.4.

χe(D2(Cn)) =

{
2, n is even

3, n is odd

Proof. Let V (Cn) = {v1, v2, . . . , vn} and E(Cn) = {e1, e2, . . . , en} where ei = vivi+1;

1 ≤ i ≤ n− 1 and en = vnv1. The shadow graph of Cn, D2(Cn), has two copies, say

C ′n and C ′′n, with V (D2(Cn)) = {v′i, v′′i ; 1 ≤ i ≤ n}. In D2(Cn), N(v′i) = N(v′′i ) and

v′i and v′′i are non adjacent vertices.

Case 1: when n is even:

Consider the color function c : V (D2(Cn))→ N as

c(v′2k−1) = c(v′′2k−1) = 1 and c(v′2k) = c(v′′2k) = 2.

Now, partition the vertex set of D2(Cn) as

V1 = {v′1, v′′1 , v′3, v′′3 , . . . , v′n−1, v′′n−1} and

V2 = {v′2, v′′2 , v′4, v′′4 , . . . , v′n, v′′n}.
Clearly, V1 and V2 are independent sets of D2(Cn) and |V1| − |V2| = 1. It holds the

inequality |Vi| − |Vj| ≤ 1 for every pair (i, j). Thus χe(D2(Cn)) = 2.

Case 2: when n is odd :

As D2(Cn) contains an odd cycle, it is not a bipartite graph. So it is not possible

to partition the vertex set of D2(Cn) into two independent sets. Therefore

χe(D2(Cn)) 6= 2. Thus we have the following three subcases:
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Subcase 1: n ≡ 0(mod 3):

Consider the color function c : V (D2(Cn))→ N as

c(v′3k−2) = c(v′′3k−2) = 1;

c(v′3k−1) = c(v′′3k−1) = 2;

c(v′3k) = c(v′′3k) = 3; k = 1, 2, . . . , n
3
.

Now, partition the vertex set of D2(Cn) as

V1 = {v′3k−2, v′′3k−2}, V2 = {v′3k−1, v′′3k−1} and V3 = {v′3k, v′′3k}; k = 1, 2, . . . , n
3
.

Clearly, V1, V2 and V3 are independent sets of D2(Cn). Also, |V1|=|V2|=|V3|=2n
3

.

Thus, χe(D2(Cn)) = 3.

Subcase 2: n ≡ 1(mod 3):

Consider the color function c : V (D2(Cn))→ N as

c(v′1) = c(v′n−2) = 1; c(v′3k) = c(v′′3k) = 1; k = 1, 2, . . . , n−4
3

.

c(v′n) = 2, c(v′3k−1) = 2; k = 1, 2, . . . , n−4
3

.

c(v′′n) = 2, c(v′′3k−1) = 2; k = 1, 2, . . . , n−1
3

.

c(v′n−1) = 3, c(v′3k+1) = 3; k = 1, 2, . . . , n−4
3

.

c(v′′n−1) = 3, c(v′′3k−2) = 3; k = 1, 2, . . . , n−1
3

.

Now, partition the vertex set of D2(Cn) as

V1 = {v′1, v′n−2, v′3k, v′′3k; k = 1, 2, . . . , n−4
3
},

V2 = {v′n, v′′n, v′3k−1(k = 1, 2, . . . , n−4
3

), v′′3k−1(k = 1, 2, . . . , n−1
3

)}, and

V3 = {v′n−1, v′′n−1, v′3k+1(k = 1, 2, . . . , n−4
3

), v′′3k−2(k = 1, 2, . . . , n−1
3

)}.
Clearly, V1, V2 and V3 are independent sets of D2(Cn).

Also, |V1| =2n−2
3

, |V2| =2n+1
3

and |V3| =2n+1
3

. Now, |V2| = |V3| and |V1| − |V2| =

|V1| − |V3| =|2n−2
3
− (2n+1

3
) = 1. It holds the inequality |Vi| − |Vj| ≤ 1, for every

pair (i, j). Thus, χe(D2(Cn)) = 3.

Subcase 3: n ≡ 2(mod 3):

Consider the color function c : V (D2(Cn))→ N as

c(v′3k−2) = 1; k = 1, 2, . . . , n+1
3

.

c(v′′3k+1) = 1; k = 1, 2, . . . , n−2
3
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c(v′3k−1) = c(v′′3k−1) = 2; k = 1, 2, . . . , n+1
3

.

c(v′′1) = 3; c(v′3k) = c(v′′3k) = 3; k = 1, 2, . . . , n−2
3

.

Now, partition the vertex set of D2(Cn) as

V1 = {v′1, v′4, v′7, . . . , v′n−1, v′′4 , v′′7 , . . . , v′′n−1},
V2 = {v′2, v′5, v′8, . . . , v′n, v′′2 , v′′5 , . . . , v′′n},
V3 = {v′3, v′6, . . . , v′n−2, v′′1 , v′′3 , v′′6 , . . . , v′′n−2}. Now, V1, V2 and V3 are independent

sets of D2(Cn).

Also, |V1| = n+1
3

+ n−2
3

= 2n−1
3

, |V2| = 2(n+1)
3

and |V3| = 2(n−2)
3

+ 1 = 2n−1
3

.

Now, |V1| = |V3| and |V2| − |V3| = |V2| − |V1| = 2n+2
3
− (2n−1

3
) = 1. It holds the

inequality |Vi| − |Vj| ≤ 1, for every pair (i, j). Thus, χe(D2(Cn)) = 3. �

Definition 2.5. The splitting graph S ′(G) of a connected graph G is obtained by

adding new vertex v′ corresponding to each vertex v of G such that N(v) = N(v′)

where N(v) and N(v′) are the neighborhood sets of v and v′ respectively.

The following theorem can be proved by the arguments analogous to the previous

Theorem 2.4.

Theorem 2.6.

χe(S
′(Cn)) =

{
2, n is even

3, n is odd

Proof. We have V (S ′(Cn)) = V (D2(Cn)) and E(S ′(Cn)) ⊂ E(D2(Cn)). Then by

Proposition 1.1, χe(S
′(Cn)) ≤ χe(D2(Cn)). Now, we can assign the same coloring

as in D2(Cn) and hence, χe(S
′(Cn)) = χe(D2(Cn)). �

3. Conclusion

The equitable chromatic number of some standard graphs like cycle, path, wheel

etc are known. We have investigated the equitable chromatic number for the larger

graphs such as M(Cn), D2(Cn) and S ′(Cn) obtained from cycle Cn.
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