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Abstract. Let G = (V,E) be a simple connected graph. The

eccentric-distance sum of G is defined as ξds(G) =
∑

u∈V (G)

e(u)D(u) where e(u)

is the eccentricity of the vertex u in G and D(u) is the sum of distances

between u and all other vertices of G. In this paper, we establish formulae to

calculate the eccentric-distance sum for some cycle related graphs, namely Cn,

complement of Cn, shadow of Cn and the line graph of Cn. Also, it is shown

that, the eccentric-distance sum of Cn is less than the eccentric-distance sum

of shadow of Cn for all n ≥ 3.
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1. Introduction

By a graph G = (V,E), we mean a finite undirected connected graph without

loops or multiple edges. The order and size of G are denoted by n and p

respectively. For basic definitions and terminologies we refer to [1]. For vertices u

and v in a connected graph G, the distance d(u, v) is the length of a shortest

u − v path in G. A u − v path of length d(u, v) is called a u − v geodesic. The

eccentricity e(v) of a vertex v in G is the maximum distance from v and a vertex

of G. The minimum eccentricity among the vertices of G is the radius, rad G or

r(G) and the maximum eccentricity is its diameter, diam G of G. A u − v walk

of G is a finite, alternating sequence u = u0e1u1e2 · · · , enun = v of vertices and

edges in G beginning with vertex u and ending with vertex v such that
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ei = ui−1ui, i = 1, 2, · · · , n. The number n is called the length of the walk. A

walk in which all the vertices are distinct is called a path. A closed walk

u0, u1, u2, · · · , un in which n ≥ 3 and u0, u1, u2, · · · , un−1 are distinct is called a

cycle of length n and is denoted by Cn. The complement Ḡ of a simple graph G

is a simple graph with vertex set V , two vertices being adjacent in Ḡ if and only

if they are not adjacent in G. The line graph L(G) is a graph in which the

vertices are the lines of G and two points in L(G) are adjacent if and only if the

corresponding lines are adjacent in G. The shadow graph S(G) of a connected

graph G is constructed by taking two copies of G say G
′

and G
′′
. Join each

vertex u
′

in G
′

to the neighbours of the corresponding vertex u
′′

in G
′′
. The

union of two graphs G1 = (V1, E1) and G2 = (V2, E2) is a graph G(V,E) where

V = V1 ∪ V2 and E = E1 ∪ E2. The sum G1 + G2 is the graph G1 ∪ G2 together

with all the lines joining points of V1 to the points of V2 . In [2], Gupta, Singh

and Madan introduced a novel topological descriptor which is called

eccentric-distance sum index (EDS) and then the concept was studied by various

authors. The eccentric-distance sum of G is defined as ξds(G) =
∑

u∈V (G)

e(u)D(u)

where e(u) is the eccentricity of the vertex u in G and D(u) is the sum of

distances between u and all other vertices of G. In this paper, we establish

formulae to calculate the eccentric-distance sum for some cycle related graphs,

namely Cn, complement of Cn, Shadow of Cn and the line graph of Cn.

Throughout this paper G denotes a connected graph with at least three vertices.

Observation 1.1. [2] ξds(Kn) = n(n− 1).

Observation 1.2. L(G) is isomorphic to G if and only if G is a cycle.

2. Main results

Theorem 2.1. The eccentric distance sum of, the sum of two cycles of length n

is ξds(Cn + Cn) = 2n× bn/2c × [n+ (
n+1∑
i=1

b(i− 1)/2c)]

Proof. Clearly the graph Cn + Cn has 2n number of vertices.

e(vi) = bn/2c where i = 1, 2, 3, . . . , 2n
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D(vi) = 1 + 1 + 2 + · · ·+ b(n− 1)/2c+ bn/2c+ (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
(n times)

= 0 + 0 + 1 + 1 + 2 + · · ·+ b(n− 1)/2c+ bn/2c+ n(1)

= [0 + 0 + 1 + 1 + 2 + · · ·+ b(n− 1)/2c+ bn/2c] + n

= [
n+1∑
j=1

b(j − 1)/2c] + n

ξds(Cn + Cn) =
2n∑
i=1

e(vi)D(vi)

= e(v1)D(v1) + · · ·+ e(v2n)D(v2n)

= bn/2c [(
n+1∑
j=1

b(j − 1)/2c)+n]+ · · ·+bn/2c [(
n+1∑
j=1

b(j − 1)/2c)+n](2n times)

= 2n bn/2c [(
n+1∑
j=1

b(j − 1)/2)c) + n]

Hence ξds(Cn + Cn) = 2n× bn/2c × [n+ (
n+1∑
i=1

b(i− 1)/2)c)] �

Remark 2.2. ξds(Cn) = n× bn/2c × (
n+1∑
i=1

b(i− 1)/2c)

Proof. The eccentricity of any vertex in (Cn+Cn) is same as the eccentricity of any

vertex in Cn. Also, the distance sum of any vertex in (Cn+Cn) is equal to n plus the

distance sum of any vertex in Cn. Thus ξds(Cn) = n×bn/2c×(
n+1∑
i=1

b(i− 1)/2c). �

Theorem 2.3. The eccentric distance sum of the sum of two cycles of length n

and m where n 6= m is ξds(Cn + Cm) = n× bn/2c × [m+ (
n+1∑
i=1

b(i− 1)/2c)] +

m× bm/2c × [n+ (
m+1∑
i=1

b(i− 1)/2c)]

Proof. Consider the graph Cn + Cm where n 6= m

Clearly it contains n+m number of vertices.

e(vi) = bn/2cfor all i = 1, 2, 3, . . . , n

e(vi) = bm/2c for all i = n+ 1, . . . ,m

D(vi) = 1 + 1 + 2 + · · ·+ b(n− 1)/2c+ bn/2c+ (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
(m times)

for all i = 1, 2, 3, · · · , n
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= 0 + 0 + 1 + 1 + 2 + · · ·+ b(n− 1)/2c+ bn/2c+ (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
(m times)

= [
n+1∑
j=1

b(j − 1)/2c] +m for all i = 1, 2, 3, . . . , n

D(vi) = 1 + 1 + 2 + · · ·+ b(m− 1)/2c+ bm/2c+ (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
(n times)

for all i = n+ 1, . . . ,m

= 0 + 0 + 1 + 1 + 2 + · · ·+ b(m− 1)/2c+ bm/2c+ (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
(n times)

= [
m+1∑
j=1

b(j − 1)/2c] + n for all i = n+ 1, . . . ,m

ξds(Cn + Cm) =
n+m∑
i=1

e(vi)D(vi)

= e(v1)D(v1) + · · ·+ e(vn)D(vn) + e(vn+1)D(vn+1) + · · ·+ e(vm)D(vm)

= bn/2c [(
n+1∑
j=1

b(j − 1)/2c) +m] + · · ·+ bn/2c [(
n+1∑
j=1

b(j − 1)/2c) +m]

+ bm/2c [(
m+1∑
j=1

b(j − 1)/2c) + n] + · · ·+ bm/2c [(
m+1∑
j=1

b(j − 1)/2c) + n]

= n× bn/2c × [m+
n+1∑
j=1

b(j − 1)/2c] +m× bm/2c × [n+ (
m+1∑
i=1

b(i− 1)/2c)]

Hence

ξds(Cn+Cm) = n×bn/2c [m+(
n+1∑
i=1

b(i− 1)/2c)]+m×bm/2c [n+(
m+1∑
i=1

b(i− 1)/2c)].

�

Remark 2.4. ξds(Cn + Cm) 6= ξds(Cn+m).

Proof. By remark 2.2,ξds(Cn+m) = (n+m)× b(n+m)/2c × (
n+m+1∑

i=1

b(i− 1)/2c)

By theorem 2.3,ξds(Cn +Cm) = n× bn/2c × [m+ (
n+1∑
i=1

b(i− 1)/2c)] +m× bm/2c

× [n+ (
m+1∑
i=1

b(i− 1)/2c)]

Hence the result follows. �
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Theorem 2.5. For n ≥ 5, ξds(Cn) = 2n(n+ 1).

Proof. e(vi) = 2 for all i = 1, 2, · · · , n

D(vi) = n+ 1 for all i = 1, 2, · · · , n

ξds(Cn) =
n∑

i=1

e(vi)D(vi)

= e(v1)D(v1) + · · ·+ e(vn)D(vn)

= 2(n+ 1) + · · ·+ 2(n+ 1)(n times)

= n× 2× (n+ 1) = 2n(n+ 1) �

Remark 2.6. For n = 3, 4, (Cn) is a disconnected graph and so eccentric distance

sum cannot be determined.

Remark 2.7. Eccentric distance sum cannot be determined for (Cn + Cn).

Proof. (Cn + Cn) is the union of (Cn) and (Cn).

That is (Cn + Cn) = (Cn) ∪ (Cn)

(Cn) ∪ (Cn) is a disconnected graph.

Thus the result follows. �

Theorem 2.8. For n ≥ 6 , ξds(Cn) < ξds(Cn).

Proof. For n ≥ 6 , n+ 1 <
n+1∑
i=1

b(i− 1)/2c

⇒ n(n+ 1) < n
n+1∑
i=1

b(i− 1)/2c

⇒ 2n(n+ 1) < 2n
n+1∑
i=1

b(i− 1)/2c

< n bn/2c
n+1∑
i=1

b(i− 1)/2c

⇒ 2n(n+ 1) < n bn/2c
n+1∑
i=1

b(i− 1)/2c

Thus ξds(Cn) < ξds(Cn) for n ≥ 6. �
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Theorem 2.9. If two graphs are isomorphic then their eccentric distance sum is

equal.

Proof. Let G1and G2be two graphs which are isomorphic. Then the eccentricity

of every vertex in G1and G2 will be equal and the distance sum of every vertex in

G1and G2will be equal. Hence the eccentric distance sum of the two graphs will

be equal. �

Result 2.10. ξds(Cn + Cn) = ξds(K2n) for n = 3.

Proof. The graph C3 + C3 is isomorphic to the complete graph with six vertices

K6.Thus ξds(C3 + C3) = ξds(K6).

We can prove the same result by giving particular value for n = 3

We know that ξds(Cn + Cn) = 2n× bn/2c × [n+ (
n+1∑
i=1

b(i− 1)/2c)]

ξds(C3 + C3) = 2× 3× b3/2c [3 + 0 + 0 + 1 + 1] = 30

We know that ξds(Kn) = n(n− 1)

ξds(K6) = 6(6− 1) = 30

ξds(C3 + C3) = ξds(K6) �

Result 2.11. For n = 5 ,ξds(Cn) = ξds(Cn).

Proof. The cycle graph on 5 vertices, C5 is the unique self- complementary graph

(up to graph isomorphism)

That is C5 is isomorphic to its complement.

Thus ξds(C5) = ξds(C5) Also, We can show the same result by giving particular

value for n = 5 in the formula

ξds(Cn) = n× bn/2c × [
n+1∑
i=1

b(i− 1)/2c]

ξds(C5) = 5× b5/2c × [
6∑

i=1

b(i− 1)/2c]

= 5× 2× [0 + 0 + 1 + 1 + 2 + 2] = 60

ξds(Cn) = 2n(n+ 1) = 60

ξds(C5) = ξds(C5). �
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Theorem 2.12. ξds(Cn) = ξds(L(Cn)).

Proof. By observation 1.2, Cn is isomorphic to L(Cn). Thus ξds(Cn) = ξds(L(Cn)).

�

Theorem 2.13. For n = 3, ξds(S(Cn)) = 4n dn/2e [1 +
n+1∑
i=1

b(i− 1)/2c].

Proof. e(vi) = dn/2e for all i = 1, 2, 3, · · · , n

e(v
′
i) = dn/2e for all i = 1, 2, · · · , n

D(vi) = [2
n+1∑
i=1

b(i− 1)/2c] + 2 for all i = 1, 2, 3, · · · , n

= 2[(
n+1∑
i=1

b(i− 1)/2c) + 1]

D(v
′
i) = [2

n+1∑
i=1

b(i− 1)/2c] + 2 for all i = 1, 2, 3, · · · , n

= 2[(
n+1∑
i=1

b(i− 1)/2c) + 1]

For n = 3

ξds(S(Cn)) =
∑

u∈V (S(Cn))

e(u)D(u)

= e(v1)D(v1) + · · ·+ e(vn)D(vn) + e(v
′
1)D(v

′
1) + · · ·+ e(v

′
n)D(v

′
n)

=

dn/2e × 2[(
n+1∑
i=1

b(i− 1)/2c) + 1] + · · ·+ dn/2e × 2[(
n+1∑
i=1

b(i− 1)/2c)

+ 1] + dn/2e × 2[(
n+1∑
i=1

b(i− 1)/2c) + 1] + · · ·+ dn/2e × 2[(
n+1∑
i=1

b(i− 1)/2c) + 1]

= 2n[dn/2e × 2[(
n+1∑
i=1

b(i− 1)/2c) + 1]]

= 4n[dn/2e [(
n+1∑
i=1

b(i− 1)/2c) + 1]]

Hence ξds(S(Cn)) = 4n dn/2e [1 +
n+1∑
i=1

b(i− 1)/2c]. �

Theorem 2.14. For n ≥ 4, ξds(S(Cn)) = 4n× bn/2c × [1 + (
n+1∑
i=1

b(i− 1)/2c)].

Proof. Clearly S(Cn) has 2n number of vertices

e(vi) = bn/2c for all i = 1, 2, 3, · · · , n
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e(v
′
i) = bn/2c for all i = 1, 2, · · · , n

D(vi) = [2(
n+1∑
i=1

b(i− 1)/2c)] + 2 for all i = 1, 2, 3, · · · , n

= 2[(
n+1∑
i=1

b(i− 1)/2c) + 1]

D(v
′
i) = [2(

n+1∑
i=1

b(i− 1)/2c)] + 2 for all i = 1, 2, 3, · · · , n

= 2[(
n+1∑
i=1

b(i− 1)/2c) + 1]

ξds(S(Cn)) =
∑

u∈V (S(Cn))

e(u)D(u)

= e(v1)D(v1) + · · ·+ e(vn)D(vn) + e(v
′
1)D(v

′
1) + · · ·+ e(v

′
n)D(v

′
n)

= bn/2c × 2[(
n+1∑
i=1

b(i− 1)/2c) + 1] + · · ·+ bn/2c × 2[(
n+1∑
i=1

b(i− 1)/2c)

+ 1] + bn/2c × 2[(
n+1∑
i=1

b(i− 1)/2c) + 1] + · · ·+ bn/2c × 2[(
n+1∑
i=1

b(i− 1)/2c) + 1]

= 2n[bn/2c × 2[(
n+1∑
i=1

b(i− 1)/2c) + 1]]

= 4n bn/2c [(
n+1∑
i=1

b(i− 1)/2c) + 1]

Hence ξds(S(Cn)) = 4n× bn/2c × [1 + (
n+1∑
i=1

b(i− 1)/2c)]. �

Theorem 2.15. ξds(Cn) < ξds(S(Cn)) for n ≥ 3.

Proof. First we prove for n ≥ 4.

n+1∑
i=1

b(i− 1)/2c < 1 +
n+1∑
i=1

b(i− 1)/2c

bn/2c
n+1∑
i=1

b(i− 1)/2c < bn/2c [1 +
n+1∑
i=1

b(i− 1)/2c]

n bn/2c
n+1∑
i=1

b(i− 1)/2c < n bn/2c [1 +
n+1∑
i=1

b(i− 1)/2c]

< 4n bn/2c [1 +
n+1∑
i=1

b(i− 1)/2c]
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i.e.n bn/2c
n+1∑
i=1

b(i− 1)/2c < 4n bn/2c [1 +
n+1∑
i=1

b(i− 1)/2c]

⇒ ξds(Cn) < ξds(S(Cn))forn ≥ 4

For n = 3

n+1∑
i=1

b(i− 1)/2c < 1 +
n+1∑
i=1

b(i− 1)/2c

bn/2c
n+1∑
i=1

b(i− 1)/2c < bn/2c [1 +
n+1∑
i=1

b(i− 1)/2c]

≤ dn/2e [1 +
n+1∑
i=1

b(i− 1)/2c] (since bn/2c ≤ dn/2e)

bn/2c
n+1∑
i=1

b(i− 1)/2c < dn/2e [1 +
n+1∑
i=1

b(i− 1)/2c]

n bn/2c
n+1∑
i=1

b(i− 1)/2c < n dn/2e [1 +
n+1∑
i=1

b(i− 1)/2c]

< 4n dn/2e [1 +
n+1∑
i=1

b(i− 1)/2c]

n bn/2c
n+1∑
i=1

b(i− 1)/2c < 4n dn/2e [1 +
n+1∑
i=1

b(i− 1)/2c]

Thus ξds(Cn) < ξds(S(Cn)) for n ≥ 3. �

Theorem 2.16. ξds(S(Cn)) = 8n(n+ 2) for n ≥ 5.

Proof. S(Cn) has 2n vertices

e(vi) = 2 for all i = 1, 2, 3, · · · , n

e(v
′

i) = 2 for all i = 1, 2, · · · , n

D(vi) = 2(n+ 2) for all i = 1, 2, 3, · · · , n

D(v
′

i) = 2(n+ 2) for all i = 1, 2, 3, · · · , n
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ξds(S(Cn)) =
∑

u∈V (S(Cn))

e(u)D(u)

= e(v1)D(v1) + · · ·+ e(vn)D(vn) + e(v
′

1)D(v
′

1) + · · ·+ e(v
′

n)D(v
′

n)

= 2[2(n+ 2)] + · · ·+ 2[2(n+ 2)] + 2[2(n+ 2)] + · · ·+ 2[2(n+ 2)]

= 2n[2× (2(n+ 2))]

= 8n(n+ 2) �

Result 2.17. ξds(S(Cn)) = ξds(S(Cn)) for n = 5.

Proof. Since Cnis isomorphic to its complement , the result follows.

Aliter:

ξds(S(Cn)) = 8n(n+ 2)

ξds(S(C5)) = 8× 5(5 + 2)

= 280 (1)

ξds(S(Cn)) = 4n bn/2c [(
n+1∑
i=1

b(i− 1)/2c) + 1]

ξds(S(C5)) = 4× 5× b5/2c [(
6∑

i=1

b(i− 1)/2c) + 1]

= 4× 5× 2[0 + 0 + 1 + 1 + 2 + 2 + 1]

= 280 (2)

From (1) and (2)

ξds(S(Cn)) = ξds(S(Cn)) for n = 5 �

Result 2.18. ξds(S(Cn)) < ξds(S(Cn)) for n ≥ 6

Proof. We find the values of ξds(S(Cn)) andξds(S(Cn)) as follows:

When n = 6, ξds(S(Cn)) = 8n(n+ 2) = 384

ξds(S(Cn)) = 4n bn/2c [(
n+1∑
i=1

b(i− 1)/2c) + 1] = 720

When n = 7, ξds(S(Cn)) = 8n(n+ 2) = 504

ξds(S(Cn)) = 4n bn/2c [(
n+1∑
i=1

b(i− 1)/2c) + 1] = 1092
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When n = 8, ξds(S(Cn)) = 8n(n+ 2) = 640

ξds(S(Cn)) = 4n bn/2c [(
n+1∑
i=1

b(i− 1)/2c) + 1] = 2176

When n = 9, ξds(S(Cn)) = 8n(n+ 2) = 792

ξds(S(Cn)) = 4n bn/2c [(
n+1∑
i=1

b(i− 1)/2c) + 1] = 3024

Thus we see that ξds(S(Cn)) < ξds(S(Cn)) for n ≥ 6 �

3. Conclusion

In this paper we have found the eccentric distance sum of, the sum of two cycles

of length n, the eccentric distance sum of a cycle , the eccentric distance sum of

complement of a cycle , the eccentric distance sum of the line graph of a cycle ,

the eccentric distance sum of the shadow graph of a cycle and we conclude that

the eccentric distance sum of the complement of a cycle is less than the eccentric

distance sum of a cycle for n ≥ 6, the eccentric distance sum of a cycle is less than

the eccentric distance sum of the shadow of a cycle for n ≥ 3 and the eccentric

distance sum of the shadow of complement of a cycle is less than the eccentric

distance sum of the shadow of a cycle for n ≥ 6.
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