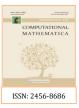


Journal homepage: www.shcpub.edu.in



Mean Cordial Labeling for Two Star Graphs

¹S. Sudhakar, ²J. Dharani ³V. Maheshwari and ⁴V. Balaji Received on 5 January 2019, Accepted on 22 February 2019

> ABSTRACT. In this paper we prove that the two star $K_{1,g} \wedge K_{1,h}$ is mean cordial graph if and only if $|2g - h| \le 4$ for $g \le h$ and $g = 1, 2, 3, \cdots$. **Key words:** Mean Cordial graph and star **Mathematics Subject classification 2010:** 05C78.

1. INTRODUCTION

We begin with simple, finite, connected and undirected graph G = (V(G), E(G)) with order p and size q. The members of V(G) and E(G) are commonly termed as graph elements, while |V(G)| and |E(G)| denotes number of vertices and edges in graph G respectively.

In 1987, Cahit [1] have introduced cordial labeling. Let f be a function from the vertices of G to $\{0, 1\}$ and for each edge xy assigns the label |f(x) - f(y)|, call f a cordial labeling of G, if the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most 1 and the number of edges labeled 0 and the number of edges labeled 1 differ by atmost 1.

Raja Ponraj, Muthirulan Sivakumar and Murugesan Sundaram introduce a new notion called mean cordial labeling and they investigate the mean cordial labeling behavior of some standard graphs. The symbol $\lceil x \rceil$ stands for smallest integer greater than or equal to x.

¹Corresponding Author: E-mail: sudha31.sr@gmail.com, ⁴pulibala70@gmail.com

^{1,2,4}Department of Mathematics, Sacred Heart College, Tirupattur-635 601, Tamil Nadu, India.

³Department of Mathematics Vells University, Chennai - 600 117, Tamil Nadu, India.

Definition 1.1. Let f be a function from V(G) to $\{0, 1, 2\}$ for each edge uv of G, assign the label $\left\lceil \frac{f(u)+f(v)}{2} \right\rceil$ f is called a mean cordial labeling of G if $|V_f(i) - V_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$, $i, j \in \{0, 1, 2\}$, where $V_f(x)$ denotes the number of vertices and $e_f(x)$ denotes the number of edges labeled with x(x = 0, 1, 2) respectively. A graph with a mean cordial labeling is called mean cordial graph.

Definition 1.2. A wedge is defined as an edge connecting two components of a graph, denoted as \wedge , $\omega(G \wedge) < \omega(G)$.

Theorem 1.1. The two star $K_{1,g} \wedge K_{1,h}$ is mean cordial graph if and only if $|2g - h| \le 4$ for $g \le h$ and $g = 1, 2, 3, \cdots$.

proof Let $G = K_{1,g} \wedge K_{1,h}$.

V(G) be the node set of G and E(G) be the link set of G, then G is given by,

 $V(G) = \{s, t\} \cup \{s_{\theta} : 1 \le \theta \le g\} \cup \{t_{\theta} : 1 \le \theta \le h\}$ and

 $E(G) = \{ ss_{\theta} : 1 \le \theta \le g \} \cup \{ tt_{\theta} : 1 \le \theta \le h \} \cup \{ s_{\theta}t_{\theta} \text{ for any } \theta \}.$

Then, G has g + h + 2 nodes and g + h + 1 links.

To prove that G is a mean cordial graph for all $g \ge 1, h \ge 1$

 $f: V(G) \to \{0, 1, 2\}$ and $f^*: E(G) \to \{0, 1, 2\}.$

We shall consider the following cases.

$$Case(i): h = 2g$$

Consider the graph $G = K_{1,g} \wedge K_{1,h}$, where $g \leq h$.

The required node labeling of G is defined as follows: f(s) = 0; f(t) = 1

 $f(s_{\theta}) = 0$ for $1 \le \theta \le g$

$$f(t_{2\theta-1}) = 1$$
 for $1 \le \theta \le \frac{h}{2}$

$$f(t_{2\theta}) = 2$$
 for $1 \le \theta \le \frac{h}{2}$

The required link labeling of G is defined as follows:

 ss_{θ} is 0 for $1 \leq \theta \leq g$; $tt_{2\theta-1}$ is 1 for $1 \leq \theta \leq \frac{h}{2}$; $tt_{2\theta}$ is 2 for $1 \leq \theta \leq \frac{h}{2}$.

The wedge labeling of $s_{\theta}t_{\theta}$ is 1 for any θ .

Then, $v_f(0) = v_f(1) = g + 1, v_f(2) = g$ and $e_f(0) = e_f(2) = g, e_f(1) = g + 1$. Hence, $|V_f(i) - V_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1, i, j \in \{0, 1, 2\}$. Hence, C is mean cordial graph if h = 2g.

Hence, G is mean cordial graph if h = 2g.

Example: Let g = 10 then we get h = 20, i.e. $K_{1,10} \wedge K_{1,20}$.

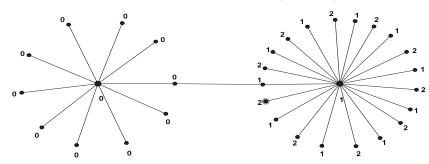


FIGURE 1. $K_{1,10} \wedge K_{1,20}$

Case(ii): h = 2g + 1

Consider the graph $G = K_{1,g} \wedge K_{1,h}$, where $g \leq h$.

The required node labeling of G is defined as follows:

$$f(s) = 0; f(t) = 1$$

$$f(s_{\theta}) = 0 \quad \text{for} \quad 1 \le \theta \le g$$

$$f(t_{2\theta-1}) = 1 \quad \text{for} \quad 1 \le \theta \le \lfloor \frac{h}{2} \rfloor$$

$$f(t_{2\theta}) = 2 \quad \text{for} \quad 1 \le \theta \le \lfloor \frac{h}{2} \rfloor$$

$$f(t_{\theta}) = 2$$

The required link labeling of G is defined as follows:

 ss_{θ} is 0 for $1 \leq \theta \leq g$; $tt_{2\theta-1}$ is 1 for $1 \leq \theta \leq \lfloor \frac{h}{2} \rfloor$; $tt_{2\theta}$ is 2 for $1 \leq \theta \leq \lfloor \frac{h}{2} \rfloor$. The wedge labeling of $s_{\theta}t_{\theta}$ is 1 for any θ .

Then, $v_f(0) = v_f(1) = v_f(2) = g + 1$ and $e_f(0) = g_{f}(1) = e_f(2) = g + 1$. Hence, $|V_f(i) - V_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$, $i, j \in \{0, 1, 2\}$.

Hence, G is mean cordial graph if h = 2g + 1.

Example: Let g = 10 then we get h = 21, i.e. $K_{1,10} \wedge K_{1,21}$.

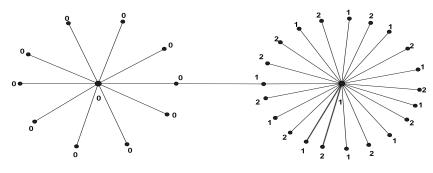


FIGURE 2. $K_{1,10} \wedge K_{1,21}$

Case(iii): h = 2g + 2

Consider the graph $G = K_{1,g} \wedge K_{1,h}$, where $g \leq h$.

The required node labeling of G is defined as follows:

$$\begin{aligned} f(s) &= 0; f(t) = 1 \\ f(s_{\theta}) &= 0 \quad \text{for} \quad 1 \leq \theta \leq g \\ f(t_{theta}) &= 0 \\ f(t_{2\theta-1}) &= 1 \quad \text{for} \quad 1 \leq \theta \leq \frac{h}{2} - 1 \\ f(t_{2\theta}) &= 2 \quad \text{for} \quad 1 \leq \theta \leq \frac{h}{2}. \end{aligned}$$

The required link labeling of G is defined as follows:
 $ss_{\theta} \text{ is } 0 \text{ for } 1 \leq \theta \leq g; tt_{2\theta-1} \text{ is } 1 \text{ for } 1 \leq \theta \leq \frac{h}{2} - 1; tt_{2\theta} \text{ is } 2 \text{ for } 1 \leq \theta \leq \frac{h}{2}. \end{aligned}$

The wedge labeling of $s_{\theta}t_{\theta}$ is 0 for any θ .

Then, $v_f(0) = g + 2$, $v_f(1) = v_f(2) = g + 1$ and $e_f(0) = e_f(1) = e_f(2) = g + 1$. Hence, $|V_f(i) - V_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1$, $i, j \in \{0, 1, 2\}$.

Hence, G is mean cordial graph if h = 2g + 2.

Example: Let g = 10 then we get h = 22, i.e. $K_{1,10} \wedge K_{1,22}$.

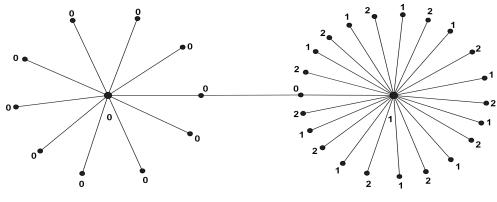


FIGURE 3. $K_{1,10} \wedge K_{1,22}$

Case(iv): h = 2g + 3

Consider the graph $G=K_{1,g}\wedge K_{1,h}$, where $g\leq h.$

The required node labeling of G is defined as follows: f(s) = 0; f(t) = 1

$$f(s_{\theta}) = 0 \quad \text{for} \quad 1 \le \theta \le g$$

$$f(t_{\theta}) = 0$$

$$f(t_{2\theta-1}) = 1 \quad \text{for} \quad 1 \le \theta \le \left\lfloor \frac{h}{2} \right\rfloor$$

$$f(t_{2\theta}) = 2 \quad \text{for} \quad 1 \le \theta \le \left\lfloor \frac{h}{2} \right\rfloor$$

The required link labeling of G is defined as follows:

 ss_{θ} is 0 for $1 \le \theta \le g$; $tt_{2\theta-1}$ is 1 for $1 \le \theta \le \lfloor \frac{h}{2} \rfloor$; $tt_{2\theta}$ is 2 for $1 \le \theta \le \lfloor \frac{h}{2} \rfloor$.

The wedge labeling of $s_{\theta}t_{\theta}$ is 0 for any θ

Then, $v_f(0) = v_f(1) = g + 2$, $v_f(2) = g + 1$ and $e_f(0) = e_f(2) = g + 1$, $e_f(1) = g + 2$.

Hence, $|V_f(i) - V_f(j)| \le 1$ and $|e_f(i) - e_f(j)| \le 1, i, j \in \{0, 1, 2\}.$

Hence, G is mean cordial graph if h = 2g + 3.

Example: Let g = 10 then we get h = 23, i.e. $K_{1,10} \wedge K_{1,23}$.

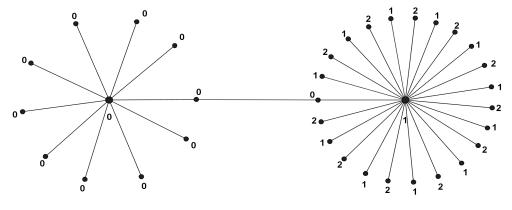


FIGURE 4. $K_{1,10} \wedge K_{1,23}$

Case(v): h = 2g + 4

Consider the graph $G = K_{1,g} \wedge K_{1,h}$, where $g \leq h$.

The required node labeling of G is defined as follows:

$$\begin{split} f(s) &= 0; f(t) = 1 \\ f(s_{\theta}) &= 0 \quad \text{for} \quad 1 \leq \theta \leq g \\ f(t_{theta}) &= 0 \\ f(t_{2\theta-1}) &= 1 \quad \text{for} \quad 1 \leq \theta \leq \frac{h}{2} - 1 \\ f(t_{2\theta}) &= 2 \quad \text{for} \quad 1 \leq \theta \leq \frac{h}{2} \\ \text{The required link labeling of G is defined as follows:} \\ ss_{\theta} \text{ is } 0 \text{ for } 1 \leq \theta \leq g; tt_{2\theta-1} \text{ is } 1 \text{ for } 1 \leq \theta \leq \frac{h}{2} - 1; tt_{2\theta} \text{ is } 2 \text{ for } 1 \leq \theta \leq \frac{h}{2}. \\ \text{The wedge labeling of } s_{\theta}t_{\theta} \text{ is } 0 \text{ for any } \theta. \\ \text{Then, } v_f(0) &= v_f(1) = v_f(2) = g + 2 \text{ and } e_f(1) = e_f(2) = g + 2, e_f(0) = g + 1. \\ \text{Hence, } |V_f(i) - V_f(j)| \leq 1 \text{ and } |e_f(i) - e_f(j)| \leq 1, i, j \in \{0, 1, 2\}. \\ \text{Hence, } G \text{ is mean cordial graph if } h = 2g + 4. \end{split}$$

Example: Let g = 10 then we get h = 24, i.e. $K_{1,10} \wedge K_{1,24}$.

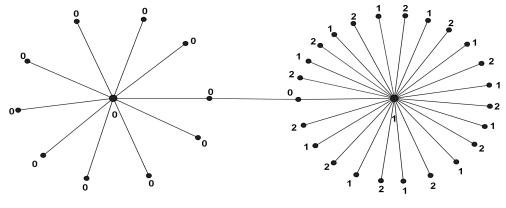


FIGURE 5. $K_{1,10} \wedge K_{1,24}$

Hence, G is mean cordial graph $|2g - h| \le 4$ for $g \le h$ and $g = 1, 2, 3, \cdots$ coveserly, we fix the 0 in s_{θ} where $1 \le \theta \le g$, some 0, 1 and 2 in t_{θ} , where $1 \le \theta \le h$, then only we get vertices less than or equal to 1. Suppose, h = 2g + 5, consider the graph $G = K_{1,g} \land K_{1,h}$, where $g \le h$ Suppose, if we fix, node labeling of G is defined as follows:

$$\begin{aligned} f(s) &= 0; f(t) = 0 \\ f(s_{\theta}) &= 0 \\ f(t_{\theta}) &= 0 \\ f(t_{2\theta-1}) &= 1 \quad \text{for} \quad 1 \leq \theta \leq \lfloor \frac{h}{2} \rfloor \\ f(t_{2\theta}) &= 2 \quad \text{for} \quad 1 \leq \theta \leq \lfloor \frac{h}{2} \rfloor \\ \end{aligned}$$

The required link labeling of G is defined as follows:
 ss_{θ} is 0 for $1 \leq \theta \leq g; tt_{2\theta-1}$ is 1 for $1 \leq \theta \leq \lfloor \frac{h}{2} \rfloor; tt_{2\theta}$ is 1 for $1 \leq \theta \leq \lfloor \frac{h}{2} \rfloor.$

 ss_{θ} is 0 for $1 \leq \theta \leq g$; $tt_{2\theta-1}$ is 1 for $1 \leq \theta \leq \lfloor \frac{n}{2} \rfloor$; $tt_{2\theta}$ is 1 for $1 \leq \theta \leq$ The wedge labeling of $s_{\theta}t_{\theta}$ is 0.

Then,
$$v_f(0) = g + 3$$
, $v_f(1) = g + 2$, $v_f(2) = g + 2$ and $e_f(0) = g + 2$, $e_f(2) = 0$,
 $e_f(1) = 2g + 4$.

Hence, $|V_f(i) - V_f(j)| \le 1$ but $|e_f(i) - e_f(j)| > 1$, $i, j \in \{0, 1, 2\}$, which is contradiction.

Suppose, if we fix, node labeling of G is defined as follows:

$$f(s) = 1; f(t) = 1$$

 $f(s_{\theta}) = 0$ for $1 < \theta < q$ $f(t_{\theta}) = 0$ $f(t_{2\theta-1}) = 1$ for $1 \le \theta \le \left|\frac{h}{2}\right|$ $f(t_{2\theta}) = 2$ for $1 \le \theta \le \left|\frac{h}{2}\right|$ The required link labeling of G is defined as follows: ss_{θ} is 1 for $1 \le \theta \le g$; $tt_{2\theta-1}$ is 1 for $1 \le \theta \le \lfloor \frac{h}{2} \rfloor$; $tt_{2\theta}$ is 2 for $1 \le \theta \le \lfloor \frac{h}{2} \rfloor$. The wedge labeling of $s_{\theta} t_{\theta}$ is 0. Then, $v_f(0) = g + 1, v_f(2) = g + 2, v_f(1) = g + 4$ and $e_f(0) = 1, e_f(1) = 2g + 3,$ $e_f(2) = g + 2.$ Hence, $|V_f(i) - V_f(j)| > 1$ and $|e_f(i) - e_f(j)| > 1$, $i, j \in \{0, 1, 2\}$, which is contradiction. Suppose, if we fix, node labeling of G is defined as follows: f(s) = 2; f(t) = 2 $f(s_{\theta}) = 0$ for $1 \le \theta \le q$ $f(t_{\theta}) = 0$ $f(t_{2\theta-1}) = 1$ for $1 \le \theta \le \left|\frac{h}{2}\right|$ $f(t_{2\theta}) = 2$ for $1 \le \theta \le \left|\frac{h}{2}\right|$ The required link labeling of G is defined as follows: ss_{θ} is 1 for $1 \le \theta \le g$; $tt_{2\theta-1}$ is 2 for $1 \le \theta \le \lfloor \frac{h}{2} \rfloor$; $tt_{2\theta}$ is 2 for $1 \le \theta \le \lfloor \frac{h}{2} \rfloor$. The wedge labeling of $s_{\theta} t_{\theta}$ is 0. Then, $v_f(0) = g + 1, v_f(1) = g + 2, v_f(2) = g + 4$ and $e_f(0) = 1, e_f(1) = g + 1,$ $e_f(2) = 2g + 4.$ Hence, $|V_f(i) - V_f(j)| > 1$ and $|e_f(i) - e_f(j)| > 1$, $i, j \in \{0, 1, 2\}$, which is contradiction. Suppose, if we fix, node labeling of G is defined as follows: f(s) = 0; f(t) = 1 $f(s_{\theta}) = 0$ for $1 \le \theta \le g$ $f(t_{\theta}) = 0$ $f(t_{2\theta-1}) = 1$ for $1 \le \theta \le \left\lfloor \frac{h}{2} \right\rfloor$ $f(t_{2\theta}) = 2$ for $1 \le \theta \le \left|\frac{h}{2}\right|$

The required link labeling of G is defined as follows:

 ss_{θ} is 1 for $1 \leq \theta \leq g$; $tt_{2\theta-1}$ is 1 for $1 \leq \theta \leq \lfloor \frac{h}{2} \rfloor$; $tt_{2\theta}$ is 2 for $1 \leq \theta \leq \lfloor \frac{h}{2} \rfloor$. The wedge labeling of $s_{\theta}t_{\theta}$ is 0.

Then, $v_f(0) = v_f(2) = g + 2$, $v_f(1) = g + 3$ and $e_f(0) = g + 1$, $e_f(1) = g + 3$, $e_f(2) = g + 2$.

Hence, $|V_f(i) - V_f(j)| \le 1$ but $|e_f(i) - e_f(j)| > 1$, $i, j \in \{0, 1, 2\}$, which is contradiction.

Suppose, if we fix, node labeling of G is defined as follows:

$$f(s) = 0; f(t) = 2$$

$$f(s_{\theta}) = 0 \quad \text{for} \quad 1 \le \theta \le g$$

$$f(t_{\theta}) = 0$$

$$f(t_{2\theta-1}) = 1 \quad \text{for} \quad 1 \le \theta \le \lfloor \frac{h}{2} \rfloor$$

$$f(t_{2\theta}) = 2 \quad \text{for} \quad 1 \le \theta \le \lfloor \frac{h}{2} \rfloor$$

The required link labeling of G is defined as follows:

 ss_{θ} is 0 for $1 \leq \theta \leq g$; $tt_{2\theta-1}$ is 2 for $1 \leq \theta \leq \lfloor \frac{h}{2} \rfloor$; $tt_{2\theta}$ is 2 for $1 \leq \theta \leq \lfloor \frac{h}{2} \rfloor$. The wedge labeling of $s_{\theta}t_{\theta}$ is 0.

Then, $v_f(0) = v_f(1) = g + 2$, $v_f(2) = g + 3$ and $e_f(0) = g + 1$, $e_f(1) = g + 3$, $e_f(2) = 2g + 4$.

Hence, $|V_f(i) - V_f(j)| \le 1$ but $|e_f(i) - e_f(j)| > 1$, $i, j \in \{0, 1, 2\}$, which is contradiction.

Suppose, if we fix, node labeling of G is defined as follows:

$$f(s) = 1; f(t) = 2$$

$$f(s_{\theta}) = 0 \quad \text{for} \quad 1 \le \theta \le g$$

$$f(t_{\theta}) = 0$$

$$f(t_{2\theta-1}) = 1 \quad \text{for} \quad 1 \le \theta \le \lfloor \frac{h}{2} \rfloor$$

$$f(t_{2\theta}) = 2 \quad \text{for} \quad 1 \le \theta \le \lfloor \frac{h}{2} \rfloor$$

The required link labeling of G is defined as follows:

 ss_{θ} is 1 for $1 \leq \theta \leq g$; $tt_{2\theta-1}$ is 2 for $1 \leq \theta \leq \lfloor \frac{h}{2} \rfloor$; $tt_{2\theta}$ is 2 for $1 \leq \theta \leq \lfloor \frac{h}{2} \rfloor$. The wedge labeling of $s_{\theta}t_{\theta}$ is 0. Then, $v_f(2) = v_f(1) = g + 3$, $v_f(0) = g + 1$ and $e_f(0) = 1, e_f(1) = g + 1$, $e_f(2) = 2g + 4$.

Hence, $|V_f(i) - V_f(j)| > 1$ and $|e_f(i) - e_f(j)| > 1$, $i, j \in \{0, 1, 2\}$, which is contradiction.

Hence, G is not mean cordial graph if h = 2g + 5.

Hence, the two star $K_{1,g} \wedge K_{1,h}$ is mean cordial graph if and only if $|2g - h| \le 4$ for $g \le h$ and $g = 1, 2, 3, \cdots$.

Acknowledgement

One of the authors (Dr. V. Balaji) acknowledges University Grants Commission, SERO, Hyderabad, India for financial assistance (*No.FMRP*5766/15(*SERO/UGC*)).

References

- [1] F. Harry, Graph Theory, Addision Wisely, New Delhi, 1969.
- [2] I. Cahit, Cordial Graphs; A weaker version of graceful and harmonious graph, Ars combin., 23(1987); 201 - 207.
- [3] J. A. Gallian, A dynamic survey of graph labeling, The Electronic journal of combinatorics, Vol. 23, No. 3, 1987, pp. 201 - 207
- [4] M. Sundaram, R. Ponraj and S. Somosundram, product Cordial Labeling of Graph, Bulletin of Pure And Applied Sciences, Vol. 23, No. 1, 2004, pp. 155 - 162.
- [5] Raja Ponraj, Muthirulan Sivakumar and Murugesan Sundaram, Mean Cordial Labeling of Graphs, Open Journal of Discrete Mathematics, 2012, 2, 145 - 148

www.shcpub.edu.in