Stability of Cubic-Quartic Functional Equation in Multi-Fuzzy Banach Spaces

${ }^{1}$ R.Murali, and ${ }^{2}$ A.Antony Raj
Received on 28 December 2017, Accepted on 25 March 2018

Abstract. In this paper we estabilish the Stability of Cubic-Quartic Functional Equations in Multi-Fuzzy Banach Spaces.

$$
\begin{align*}
g(2 a+b)+g(2 a-b) & =3 g(a+b)+g(-a-b)+3 g(a-b)+g(b-a)+18 g(a) \\
& +6 g(-a)-3 g(b)-3 g(-b) \tag{1}
\end{align*}
$$

Key words: Hyers-Ulam stability, Multi-Fuzzy-Banach Spaces, Cubic-Quartic Functional Equation, Fixed Point Method.
AMS Subject classification: Primary 39B82, Secondary 39B52, 46B99.

1. Introduction and Preliminaries

The first stability problem of functional equation was raised by S.M. Ulam 18 about seventy seven years ago. Since then, this question has attracted the attention of many researchers. The affirmtive solution to this question was given by D.H. Hyers [8] in 1941. In the year 1950, T. Aoki [2] generalized the Hyers theorem for additive mappings. The result of Hyers was generalized independently by Th.M.Rassias [16] for linear mappings by considering an unbounded Cauchy difference. In 1994, a further generalization of Th.M. Rassias theorem was obtained by P.Gavruta [7]. After that, the stability problem of several functional equations have been extensively investigated by a number of authors [?, 3, 17] on various spaces like, normed spaces, Banach spaces, Fuzzy normed spaces, Non-Archimedean space and etc.

[^0]Sun-Young Jung, Choonkil Park and Dong Yun Shin 11 proved the Fuzzy stability of the Cubic-Quartic functional equation by using fixed point method. The multi-Banach space was first investigated by Dales and Polyakov [4]. Theory of multi-Banach spaces is similar to operator sequence space and has some connections with operator spaces and Banach spaces. In 2007 H.G. Dales and M.S. Moslehian [5] first proved the stability of mappings on multi-normed spaces and also gave some examples on multi-normed spaces. The stability of functional equations on multi-normed spaces was proved by many mathematicians (see, $[?, 6,10,12$).

Definition 1.1. 9] Let (E, N) be a fuzzy normed space. A multi-fuzzy norm on $\left\{E^{k}, k \in \mathbb{N}\right\}$ is a sequence N_{k} such that N_{k} is a fuzzy norm on $E^{k}(k \in \mathbb{N})$, $N_{1}(x, t)=N(x, t)$ for each $x \in E$ and $t \in \mathbb{R}$ and the following axioms are satisfied for each $k \in \mathbb{N}$ with $k \geq 2$:
(1). for each $\sigma \in, x \in E^{k}$ and $t \in \mathbb{R}$,

$$
N_{k}\left(A_{\sigma}(x), t\right)=N_{k}(x, t) ;
$$

(2). for each $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{R}^{k}, x \in E^{k}$ and $t \in \mathbb{R}$,

$$
N_{k}\left(M_{\alpha}(x), t\right) \geq N_{k}\left(\max _{i \in \mathbb{N}_{k}}\left|\alpha_{i}\right| x, t\right)
$$

(3). for each $x_{1}, \ldots, x_{k} \in E$ and $t \in \mathbb{R}$,

$$
N_{k+1}\left(\left(x_{1}, \ldots, x_{k}, 0\right), t\right)=N_{k}\left(\left(x_{1}, \ldots, x_{k}\right), t\right)
$$

(4). for each $x_{1}, \ldots, x_{k} \in E$ and $t \in \mathbb{R}$,

$$
N_{k+1}\left(\left(x_{1}, \ldots, x_{k}, x_{k}\right), t\right)=N_{k}\left(\left(x_{1}, \ldots, x_{k}\right), t\right)
$$

In such a case $\left\{\left(E^{k}, N_{k}\right), k \in \mathbb{N}\right\}$ is called a muti-fuzzy normed space.

$$
\begin{align*}
D g(a, b) & =g(2 a+b)+g(2 a-b)-3 g(a+b)-g(-a-b)-3 g(a-b) \\
& -g(b-a)-18 g(a)-6 g(-a)+3 g(b)+3 g(-b) \tag{2}
\end{align*}
$$

Throughout this paper, assume that \mathcal{X} be a linear space and let $\left(\mathcal{Y}^{n},\|.\|_{n}\right)$ be a multi-Banach space.

Theorem 1.2. Let $\phi: \mathcal{X}^{2 k} \rightarrow[0, \infty)$ be a function such that there exists an $\mathcal{L}<1$ with

$$
\phi\left(a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right) \leq \frac{\mathcal{L}}{8} \phi\left(2 a_{1}, 2 b_{1}, \ldots, 2 a_{k}, 2 b_{k}\right)
$$

for all $a_{i}, b_{i} \in \mathcal{X}$ where $i=1, . ., k$. Let $g: \mathcal{X} \rightarrow \mathcal{Y}$ be an odd mapping satisfies

$$
\begin{equation*}
N_{k}\left(\left(D g\left(a_{1}, b_{1}\right), \ldots, D g\left(a_{k}, b_{k}\right)\right), t\right) \geq \frac{t}{t+\phi\left(a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right)} \tag{3}
\end{equation*}
$$

for all $a_{i}, b_{i} \in \mathcal{X}$ where $i=1, . ., k$ and all $t>0$. Then

$$
\mathcal{C}(a)=N-\lim _{n \rightarrow \infty} 8^{n} g\left(\frac{a}{2^{n}}\right)
$$

exists for each $a \in \mathcal{X}$ and defines a cubic mapping $\mathcal{C}: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
N_{k}\left(\left(g\left(a_{1}\right)-\mathcal{C}\left(a_{1}\right), \ldots, g\left(a_{k}\right)-\mathcal{C}\left(a_{k}\right)\right), t\right) \geq \frac{(16-16 \mathcal{L}) t}{(16-16 \mathcal{L}) t+\mathcal{L} \phi\left(a_{1}, 0, \ldots, a_{k}, 0\right)} \tag{4}
\end{equation*}
$$

for all $a_{i} \in \mathcal{X}$ where $i=1, . ., k$ and all $t>0$.

Proof. Letting $b_{i}=0$ where $i=1, . ., k$ in (3), we get

$$
\begin{equation*}
N_{k}\left(\left(2 g\left(2 a_{1}\right)-16 g\left(a_{1}\right), \ldots, 2 g\left(2 a_{k}\right)-16 g\left(a_{k}\right)\right), t\right) \geq \frac{t}{t+\phi\left(a_{1}, 0, . ., a_{k}, 0\right)} \tag{5}
\end{equation*}
$$

for all $a_{i} \in \mathcal{X}$ where $i=1, \ldots, k$ and all $t>0$. Consider the set $\mathcal{S}:=\{h: \mathcal{X} \rightarrow \mathcal{Y}\}$ and introduce the generalized metric on \mathcal{S} :

$$
d(h, l)=\inf \left\{\mu \in \mathbb{R}_{+}: N\left(h\left(a_{1}\right)-l\left(a_{1}\right), \ldots, h\left(a_{k}\right)-l\left(a_{k}\right), \mu t\right) \geq \frac{t}{t+\phi\left(a_{1}, 0, . ., a_{k}, 0\right)}\right\}
$$

where as usual $\inf \phi=+\infty$. It is easy to prove that (\mathcal{S}, d) is complete. See 13. Now, we consider the linear mapping $\mathcal{J}: \mathcal{S} \rightarrow \mathcal{S}$ such that

$$
\mathcal{J} h(a)=8 h\left(\frac{a}{2}\right)
$$

for all $a \in \mathcal{X}$. Let $h, l \in \mathcal{S}$ be given such that $d(h, l)=\epsilon$. Then

$$
N_{k}\left(\left(h\left(a_{1}\right)-l\left(a_{1}\right), \ldots, h\left(a_{k}\right)-l\left(a_{k}\right)\right), \epsilon t\right) \geq \frac{t}{t+\phi\left(a_{1}, 0, . ., a_{k}, 0\right)}
$$

for all $a_{i} \in \mathcal{X}$ where $i=1, . ., k$ and all $t>0$. Hence

$$
\begin{aligned}
& N_{k}\left(\left(\mathcal{J} h\left(a_{1}\right)-\mathcal{J} l\left(a_{1}\right), \ldots, \mathcal{J} h\left(a_{k}\right)-\mathcal{J} l\left(a_{k}\right)\right), \mathcal{L} \epsilon t\right) \\
& =N_{k}\left(\left(8 h\left(\frac{a_{1}}{2}\right)-8 l\left(\frac{a_{1}}{2}\right), \ldots, 8 h\left(\frac{a_{k}}{2}\right)-8 l\left(\frac{a_{k}}{2}\right)\right), \mathcal{L} \epsilon t\right) \\
& =N_{k}\left(\left(h\left(\frac{a_{1}}{2}\right)-l\left(\frac{a_{1}}{2}\right), \ldots, h\left(\frac{a_{k}}{2}\right)-l\left(\frac{a_{k}}{2}\right)\right), \frac{\mathcal{L}}{8} \epsilon t\right) \\
& \geq \frac{\frac{\mathcal{L} t}{8}}{\frac{\mathcal{L} t}{8}+\frac{\mathcal{L}}{8} \phi\left(a_{1}, 0, . ., a_{k}, 0\right)} \\
& =\frac{t}{t+\phi\left(a_{1}, 0, . ., a_{k}, 0\right)}
\end{aligned}
$$

for all $a_{i} \in \mathcal{X}$, where $i=1, \ldots, k$ and all $t>0$. So $d(h, l)=\epsilon$ implies that $d(\mathcal{J} l, \mathcal{J} l) \leq \mathcal{L} \epsilon$. This means that

$$
d(\mathcal{J} h, \mathcal{J} l) \leq \mathcal{L} d(h, l)
$$

for all $h, l \in \mathcal{S}$. It follows from (5) that

$$
N_{k}\left(\left(g\left(a_{1}\right)-8\left(\frac{a_{1}}{2}\right), \ldots, g\left(a_{k}\right)-8\left(\frac{a_{k}}{2}\right)\right), \frac{\mathcal{L}}{16} t\right) \geq \frac{t}{t+\phi\left(a_{1}, 0, . ., a_{k}, 0\right)}
$$

for all $a_{i} \in \mathcal{X}$, where $i=1, \ldots, k$ and all $t>0$. So $d(g, \mathcal{J} g) \leq \frac{\mathcal{L}}{16}$.
By Theorem 2.2 [14, there exists a cubic mapping $\mathcal{C}: \mathcal{X} \rightarrow \mathcal{Y}$ satisfying the following:
(1). \mathcal{C} is a fixed point of \mathcal{J}, i.e

$$
\begin{equation*}
\mathcal{C}\left(\frac{a}{2}\right)=\frac{1}{8} \mathcal{C}(a) \tag{6}
\end{equation*}
$$

for all $a \in \mathcal{X}$. The mapping \mathcal{C} is a unique fixed point of \mathcal{J} in the set $\mathcal{M}=$ $\{h \in \mathcal{S}: d(g, h)<\infty\}$. This implies that C is a unique mapping satisfying (6) such that there exists a $\mu \in(0, \infty)$ satisfying

$$
N_{k}\left(\left(g\left(a_{1}\right)-\mathcal{C}\left(a_{1}\right), \ldots, g\left(a_{k}\right)-\mathcal{C}\left(a_{k}\right)\right), \mu t\right) \geq \frac{t}{t+\phi\left(a_{1}, 0, . ., a_{k}, 0\right)}
$$

for all $a_{i} \in \mathcal{X}$, where $i=1, . ., k$ and all $t>0$.
(2). $d\left(\mathcal{J}^{n} g, \mathcal{C}\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
N-\lim _{n \rightarrow \infty} 8^{n} g\left(\frac{a}{2^{n}}\right)=\mathcal{C}(a) \quad \text { for all } \quad a \in \mathcal{X}
$$

(3). $d(g, \mathcal{C}) \leq \frac{1}{1-\mathcal{L}} d(g, \mathcal{J} g)$, which implies the inequality

$$
d(g, \mathcal{C}) \leq \frac{\mathcal{L}}{16-16 \mathcal{L}}
$$

This implies that the inequality (4) holds. By (3),

$$
N_{k}\left(\left(8^{n} D g\left(\frac{a_{1}}{2}, \frac{b_{1}}{2}\right), \ldots, 8^{n} D g\left(\frac{a_{k}}{2}, \frac{b_{k}}{2}\right)\right), 8^{n} t\right) \geq \frac{t}{t+\phi\left(\frac{a_{1}}{2^{n}}, \frac{b_{1}}{2^{n}}, \ldots, \frac{a_{k}}{2^{n}}, \frac{b_{k}}{2^{n}}\right)}
$$

for all $a_{i}, b_{i} \in \mathcal{X}$, where $i=1, . ., k$ all $t>0$ and all $n \in \mathbb{N}$. So

$$
N_{k}\left(\left(8^{n} D g\left(\frac{a_{1}}{2}, \frac{b_{1}}{2}\right), \ldots, 8^{n} D g\left(\frac{a_{k}}{2}, \frac{b_{k}}{2}\right)\right), t\right) \geq \frac{\frac{t}{8^{n}}}{\frac{t}{8^{n}}+\frac{\mathcal{L}^{n}}{8^{n}} \phi\left(a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right)}
$$

for all $a_{i}, b_{i} \in \mathcal{X}$, where $i=1, . ., k$ all $t>0$ and all $n \in \mathbb{N}$. Since

$$
\lim _{n \rightarrow \infty} \frac{\frac{t}{8^{n}}}{\frac{t}{8^{n}}+\frac{\mathcal{L}^{n}}{8^{n}} \phi\left(a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right)}
$$

for all $a_{i}, b_{i} \in \mathcal{X}$, where $i=1, . ., k$ all $t>0$.

$$
N_{k}\left(\left(D \mathcal{C}\left(a_{1}, b_{1}\right), \ldots, D \mathcal{C}\left(a_{k}, b_{k}\right)\right), t\right)=1
$$

for all $a_{i}, b_{i} \in \mathcal{X}$, where $i=1, \ldots, k$ all $t>0$. Thus the mapping $\mathcal{C}: \mathcal{X} \rightarrow \mathcal{Y}$ is cubic, as desired.

Corollary 1.3. Let $\vartheta \geq 0$ and let γ be a real number and $\gamma>3$. Let $g: \mathcal{X} \rightarrow \mathcal{Y}$ be an odd mapping satisfying

$$
\begin{equation*}
N_{k}\left(\left(D g\left(a_{1}, b_{1}\right), \ldots, D g\left(a_{k}, b_{k}\right)\right), t\right) \geq \frac{t}{t+\vartheta\left(\left\|a_{1}\right\|^{\gamma}+\left\|b_{1}\right\|^{\gamma}, \ldots,\left\|a_{k}\right\|^{\gamma}+\left\|b_{k}\right\|^{\gamma}\right)} \tag{7}
\end{equation*}
$$

for all $a_{i}, b_{i} \in \mathcal{X}$, where $i=1, . ., k$ all $t>0$. Then $\mathcal{C}(a)=N-\lim _{n \rightarrow \infty} 8^{n} g\left(\frac{a}{2^{n}}\right)$ exists, and defines a cubic mapping $\mathcal{C}: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
N_{k}\left(\left(g\left(a_{1}\right)-\mathcal{C}\left(a_{1}\right), . ., g\left(a_{k}\right)-\mathcal{C}\left(a_{k}\right)\right), t\right) \geq \frac{2\left(2^{\gamma}-8\right) t}{2\left(2^{p}-8\right) t+\vartheta\left\|a_{1}\right\|^{\gamma}, \ldots,\left\|a_{k}\right\|^{\gamma}}
$$

for all $a_{i}, b_{i} \in \mathcal{X}$, where $i=1, . ., k$ all $t>0$.

Proof. The proof follows from Theorem 1.2 by taking

$$
\phi\left(a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right)=\vartheta\left(\left\|a_{1}\right\|^{\gamma}+\left\|b_{1}\right\|^{\gamma}, \ldots,\left\|a_{k}\right\|^{\gamma}+\left\|b_{k}\right\|^{\gamma}\right)
$$

for all $a_{i}, b_{i} \in \mathcal{X}$, where $i=1, . ., k$ all $t>0$. Then we can choose $L=2^{3-\gamma}$ and we get the desired result.

Theorem 1.4. Let $\phi: \mathcal{X}^{2 k} \rightarrow[0, \infty)$ be a function such that there exists an $\mathcal{L}<1$ with

$$
\phi\left(a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right) \leq \frac{\mathcal{L}}{16} \phi\left(2 a_{1}, 2 b_{1}, \ldots, 2 a_{k}, 2 b_{k}\right)
$$

for all $a_{i}, b_{i} \in \mathcal{X}$ where $i=1, . ., k$. Let $g: \mathcal{X} \rightarrow \mathcal{Y}$ be an even mapping satisfying the inequality (3). Then

$$
\mathcal{Q}(a)=N-\lim _{n \rightarrow \infty} 16^{n} g\left(\frac{a}{2^{n}}\right)
$$

exists for each $a \in \mathcal{X}$ and defines a quartic function $\mathcal{Q}: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
N_{k}\left(\left(g\left(a_{1}\right)-\mathcal{Q}\left(a_{1}\right), \ldots, g\left(a_{k}\right)-\mathcal{Q}\left(a_{k}\right)\right), t\right) \geq \frac{(32-32 \mathcal{L}) t}{(32-32 \mathcal{L}) t+\mathcal{L} \phi\left(a_{1}, 0, \ldots, a_{k}, 0\right)} \tag{8}
\end{equation*}
$$

for all $a_{i} \in \mathcal{X}$ where $i=1, . ., k$ and all $t>0$.

Proof. Letting $b_{i}=0$ where $i=1, . ., k$ in (3), we get

$$
\begin{equation*}
N_{k}\left(\left(2 g\left(2 a_{1}\right)-32 g\left(a_{1}\right), \ldots, 2 g\left(2 a_{k}\right)-32 g\left(a_{k}\right)\right), t\right) \geq \frac{t}{t+\phi\left(a_{1}, 0, . ., a_{k}, 0\right)} \tag{9}
\end{equation*}
$$

for all $a_{i} \in \mathcal{X}$ where $i=1, . ., k$ and all $t>0$. Consider the set $\mathcal{S}:=\{h: \mathcal{X} \rightarrow \mathcal{Y}\}$ and introduce the generalized metric on \mathcal{S} :
$d(h, l)=\inf \left\{\mu \in \mathbb{R}_{+}: N_{k}\left(h\left(a_{1}\right)-l\left(a_{1}\right), \ldots, h\left(a_{k}\right)-l\left(a_{k}\right), \mu t\right) \geq \frac{t}{t+\phi\left(a_{1}, 0, . ., a_{k}, 0\right)}\right\}$
where as usual $\inf \phi=+\infty$. It is easy to show that (\mathcal{S}, d) is complete. see [13].
Now, we consider the linear mapping $\mathcal{J}: \mathcal{S} \rightarrow \mathcal{S}$ such that

$$
J h(a)=16 h\left(\frac{a}{2}\right)
$$

for all $a \in \mathcal{X}$. Let $h, l \in \mathcal{S}$ be given such that $d(h, l)=\epsilon$. Then

$$
N_{k}\left(\left(h\left(a_{1}\right)-l\left(a_{1}\right), \ldots, h\left(a_{k}\right)-l\left(a_{k}\right)\right), \epsilon t\right) \geq \frac{t}{t+\phi\left(a_{1}, 0, . ., a_{k}, 0\right)}
$$

for all $a_{i} \in \mathcal{X}$ where $i=1, . ., k$ and all $t>0$. Hence

$$
\begin{aligned}
& N_{k}\left(\left(\mathcal{J} h\left(a_{1}\right)-\mathcal{J} l\left(a_{1}\right), \ldots, \mathcal{J} h\left(a_{k}\right)-\mathcal{J} l\left(a_{k}\right)\right), \mathcal{L} \epsilon t\right) \\
& =N_{k}\left(\left(16 h\left(\frac{a_{1}}{2}\right)-16 l\left(\frac{a_{1}}{2}\right), \ldots, 16 h\left(\frac{a_{k}}{2}\right)-16 l\left(\frac{a_{k}}{2}\right)\right), \mathcal{L} \epsilon t\right) \\
& =N_{k}\left(\left(h\left(\frac{a_{1}}{2}\right)-l\left(\frac{a_{1}}{2}\right), \ldots, h\left(\frac{a_{k}}{2}\right)-l\left(\frac{a_{k}}{2}\right)\right), \frac{\mathcal{L}}{16} \epsilon t\right) \\
& \geq \frac{\frac{\mathcal{L} t}{16}}{\frac{\mathcal{L} t}{16}+\frac{\mathcal{L}}{16} \phi\left(a_{1}, 0, . ., a_{k}, 0\right)} \\
& =\frac{t}{t+\phi\left(a_{1}, 0, . ., a_{k}, 0\right)}
\end{aligned}
$$

for all $a_{i} \in \mathcal{X}$, where $i=1, \ldots, k$ and all $t>0$. So $d(h, l)=\epsilon$ implies that $d(\mathcal{J} h, \mathcal{J} l) \leq \mathcal{L} \epsilon$. This means that

$$
d(\mathcal{J} h, \mathcal{J} l) \leq \mathcal{L} d(h, l)
$$

for all $h, l \in \mathcal{S}$. It follows from (9) that

$$
N_{k}\left(\left(g\left(a_{1}\right)-16 g\left(\frac{a_{1}}{2}\right), \ldots, g\left(a_{k}\right)-16 g\left(\frac{a_{k}}{2}\right)\right), \frac{\mathcal{L}}{32} t\right) \geq \frac{t}{t+\phi\left(a_{1}, 0, . ., a_{k}, 0\right)}
$$

for all $a_{i} \in \mathcal{X}$, where $i=1, . ., k$ and all $t>0$. So $d(g, \mathcal{J} g) \leq \frac{\mathcal{L}}{32}$.
By Theorem 2.2 [14, there exists a quartic mapping $\mathcal{Q}: \mathcal{X} \rightarrow \mathcal{Y}$ satisfying the following:
(1). \mathcal{Q} is a fixed point of \mathcal{J}, i.e

$$
\begin{equation*}
\mathcal{Q}\left(\frac{a}{2}\right)=\frac{1}{16} \mathcal{Q}(a) \tag{10}
\end{equation*}
$$

for all $a \in \mathcal{X}$. The mapping \mathcal{Q} is a unique fixed point of \mathcal{J} in the set $\mathcal{M}=$ $\{h \in \mathcal{S}: d(g, h)<\infty\}$. This implies that \mathcal{Q} is a unique mapping satisfying (10) such that there exists a $\mu \in(0, \infty)$ satisfying

$$
N_{k}\left(\left(g\left(a_{1}\right)-\mathcal{Q}\left(a_{1}\right), \ldots, g\left(a_{k}\right)-\mathcal{Q}\left(a_{k}\right)\right), \mu t\right) \geq \frac{t}{t+\phi\left(a_{1}, 0, . ., a_{k}, 0\right)}
$$

for all $a_{i} \in \mathcal{X}$, where $i=1, . ., k$ and all $t>0$.
(2). $d\left(\mathcal{J}^{n} g, \mathcal{Q}\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
N-\lim _{n \rightarrow \infty} 16^{n} g\left(\frac{a}{2^{n}}\right)=\mathcal{Q}(a)
$$

for all $a \in \mathcal{X}$.
(3). $d(g, \mathcal{Q}) \leq \frac{1}{1-L} d(g, \mathcal{J} g)$, which implies the inequality

$$
d(g, \mathcal{Q}) \leq \frac{\mathcal{L}}{32-32 \mathcal{L}}
$$

This implies that the inequality (8) holds. The rest of the proof is similar to the proof of Theorem 1.2

Corollary 1.5. Let $\vartheta \geq 0$ and let γ be a real number and $\gamma>4$. Let $g: \mathcal{X} \rightarrow \mathcal{Y}$ be an even mapping satisfying

$$
\begin{equation*}
N_{k}\left(\left(D g\left(a_{1}, b_{1}\right), \ldots, D g\left(a_{k}, b_{k}\right)\right), t\right) \geq \frac{t}{t+\vartheta\left(\left\|a_{1}\right\|^{\gamma}+\left\|b_{1}\right\|^{\gamma}, \ldots,\left\|a_{k}\right\|^{\gamma}+\left\|b_{k}\right\|^{\gamma}\right)} \tag{11}
\end{equation*}
$$

for all $a_{i}, b_{i} \in \mathcal{X}$, where $i=1, \ldots, k$ all $t>0$. Then $\mathcal{Q}(a)=N-\lim _{n \rightarrow \infty} 16^{n} g\left(\frac{a}{2^{n}}\right)$ exists, and defines a quartic mapping $\mathcal{Q}: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
N_{k}\left(\left(g\left(a_{1}\right)-\mathcal{Q}\left(a_{1}\right), . ., g\left(a_{k}\right)-\mathcal{Q}\left(a_{k}\right)\right), t\right) \geq \frac{2\left(2^{\gamma}-16\right) t}{2\left(2^{\gamma}-16\right) t+\vartheta\left\|a_{1}\right\|^{\gamma}, \ldots,\left\|a_{k}\right\|^{\gamma}}
$$

for all $a_{i}, b_{i} \in \mathcal{X}$, where $i=1, . ., k$ all $t>0$.

The proof follows from Theorem 1.4 by taking

$$
\phi\left(a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right)=\vartheta\left(\left\|a_{1}\right\|^{\gamma}+\left\|b_{1}\right\|^{\gamma}, \ldots,\left\|a_{k}\right\|^{\gamma}+\left\|b_{k}\right\|^{\gamma}\right)
$$

for all $a_{i}, b_{i} \in a$, where $i=1, . ., k$ all $t>0$. Then we can choose $\mathcal{L}=2^{4-\gamma}$ and we get the desired result.

References

[1] Arunkumar. M, Ravi. K, Rassias.JM: Stability of a quartic and orthogonally quartic functional equation, Bull. Math. Anal. Appl. 3, 2011, 13-24.
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J.Math. Soc. Japan 2 (1950) 64-66.
[3] M. Almahalebi, A. Chahbi and S. Kabbaj, A Fixed point approach to the stability of a bi-cubic functional equations in 2-Banach spaces, Palestine J. Math. vol. 5 (2), 2016, 220-227.
[4] H.G. Dales and M.E. Polyakov, multi-normed spaces and multi-Banach algebras, preprint.
[5] H.G. Dales and M.S. Moslehian, Stability of mappings on multi-normed spaces, Glasgow Mathematical Journal, 49 (2), (2007), pp. 321-332.
[6] L. Wang, B.Liu and R. Bai, stability of a mixed type functional equations on multi-Banach spaces: Fixed point approach, Fixed point theory and applications, vol. 2010, Art. ID. 283827, 9 pages, doi: 10.1155/2010/283827.
[7] P. Gavruta, On a problem of G.Isac and Th.M.Rassias concerning the stability of mappings, J. Math. Anal. Appl. 261 (2001), 543-553.
[8] D.H.Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222-224.
[9] M. Khanehgir, Stability of the Jenson's Fuctional Equation in Multi-fuzzy Normed spaces, Iranian Journal of Fuzzy Systems, 14(3), (2017), 105-119.
[10] M.S. Moslehian, K. Nikodem and D. Popa, Asymptotic aspects of the quadratic functional equations in multi-normed spaces, Journal of Mathematical Analysis and Applications, (355) (2) (2009), pp. 717-724.
[11] Sun-Young Jung, Choonkil Park and Dong Yun Shin, Fuzzy Stability of a cubic-quartic functional equation: A Fixed Point Approach, Bull. Korean Math. Soc 48 (2011), pp. 491-503.
[12] M.S. Moslehian and H.M. Srivastava, Jensens functional equations in multi-normed spaces, Taiwanese J. of Math., (14) (2) (2010), pp. 453-462.
[13] D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, Journal of mathematical Analysis and Applications, 343 (2008), 567-572.
[14] V.Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91-96.
[15] Ratz.J, On Orthogonally Additive Mappings, Aequationes Mathematicae, 28 (1985), 35-49.
[16] Th.M. Rassias, On the stability of the linear mappings in Banach Spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[17] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta. Appl. Math. 62 (2000) 23 - 130.
[18] S.M. Ulam, Prblem in Modern Mathematics (Science Edition), John Wiley and sons, Inc., New York, (1964).

[^0]: ${ }^{1}$ Corresponding Author: E-mail: shcrmurali@yahoo.co.in
 ${ }^{1,2} \mathrm{PG}$ and Research Department of Mathematics, Sacred Heart College, Tirupattur, Vellore District - 635 601, Tamil Nadu, S.India.

