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Abstract. Mathematical model for the effect of pathogen infection model

with three delays are proposed and analyzed. Some analytical results on the

global stability of pathogen free equilibrium and pathogen present equilibrium

are obtained. The stability/instability of the positive steady state and

associated Hopf bifurcation are investigated by analyzing the characteristic

equations.
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1. Introduction

Many works have been developed for various infectious diseases using different

types of delay differential equation models [1–9]. Simple models are useful for

verifying the various hypotheses and for determining the method of medical

treatments. In the last few decades some mathematical models have been

developed to understand the dynamics of interactions of pathogens with host’s

immune response in vivo. This has helped us to predict reduction of viral load or

eradication of infection and to get a better insight of spread of infection within

the body. The mechanisms of immune response and pathogen interaction are

discussed by Denise [10] and the references cited therein. The loss of pathogens

or effect of absorption has not been considered in pathogen-immune interaction
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models [10–12]. Consider the basic mathematical model for HIV infection

containing the density of uninfected cells, that of infected cells, and that of virus

cells in [11]. They also present models which incorporate the effect of the

cell-mediated immunity to this model. Similarly, we refer the reader to Perelson

and Nelson [13] for other models of HIV infection. For instance, Nowak et.

al. [14] and Neumann et al. [15] present similar models for hepatitis B virus

(HBV) infection, and hepatitis C virus (HCV) infection which have been studied

respectively. In recent, some viral infection with mathematical models along with

therapy intervention have been studied in [4, 16–20].

Murase et al. [21] proposed a mathematical model with immune response and

absorption of pathogens into uninfected cells. They studied the local stability of

equilibria to get an insight of the persistence of infection and considered different

cases in their models. Firstly they considered the basic virus dynamics model

and then in the next model, they incorporated immune response and ignored the

effect of absorption. Further, in third case they incorporated the effect of

absorption of pathogens into uninfected cells and found that absorption of

pathogens may disturb the stability of interior equilibrium point. Recently, B.

Dubey et. al., [22] investigated the intracellular pathogen-immune interaction

with cure rate. They observed that the effect of cure in infected cells through

non-cytolytic process has also been observed and found a decrease in infected

cells and subsequent increase in uninfected cells.

The purpose of this paper is to study the stability of the equilibria, or the

steady states, of the mathematical models which describe pathogen-immune

dynamics. Motivated by the above work [21], we analyze global stability analysis

of pathogen-immune dynamics with three discrete delays, we consider our model

only for the loss of pathogens by the absorption is ignored. Because, absorption

of pathogens may disturb the stability of interior equilibrium point.

The rest of this paper is organized as follows: In the next section, we analyze

the positivity and boundedness of pathogen dynamics. We discuss the local and

global stability of pathogen-immune dynamical model in Section 3. Finally, we

draw our conclusions in Section 4.



Analysis of Pathogen-Immune Interaction Dynamics with Three Time delays 4

2. Mathematical model

In the beginning, we introduce one of them, which is developed by Nowak and

Bangham [11], and is used as a model of HIV infection. The model contains three

variables: the density of uninfected cells x, the density of infected cells y and the

density of pathogen’s in blood p. Uninfected cells are recruited at a constant rate

s from the source within the body, such as the bone marrow, and have the natural

life expectancy of 1/d days. Cells are infected by contact with pathogen’s, and

turn to infected cells at rate βp. Infected cells die at rate a. Death of the cell

results in the release of r pathogen’s per an infected cell, and these pathogen’s

have a life-expectancy 1/b in the blood. Pathogens either die or successfully infect

new cells. The amount of the absorption of pathogens into uninfected cells is small

compared to those of decrease of pathogens in the case of HIV [23], and Nowak

and Bangham [11] also ignore the loss of pathogens due to the absorption. These

assumptions lead to the following system of differential equations:

ẋ = s− dx− βxp,

ẏ = βxp− ay,

ṗ = ary − bp. (1)

Now, we consider immune response against pathogen’s. Here we take only humoral

immunity into account. When pathogen’s go into blood, the B cells are activated

and secrete antibody. Immune system removes pathogen’s in blood with the aid

of antibody. Here we take only the loss of pathogen’s by the absorption is ignored

and also we added the time delay into the above model as follows:

ẋ = s− dx− βxp,

ẏ = βx(t− τ1)p(t− τ1)− ay,

ṗ = ary(t− τ2)− bp− µpz,

ż = kp(t− τ3)z(t− τ3)− cz, (2)

where we represent the density of the pathogen’s-specific lymphocytes by a new

variable z. The pathogen’s are removed at rate µz by the immune system. The
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pathogen’s-specific lymphocytes proliferate at rate kp by contact with the

pathogen’s, and die at rate c. τ1 represents the time delay between uninfected

cells by contact with pathogen’s. τ2 represents the period between complete

production of pathogens, τ3 describes the time delay between immune cells by

contact with pathogen’s.

2.1. Positiveness of the solution. Let τ0 = max{τ1, τ2, τ3}; we denote by

C = C([−τ0, 0],R4) the Banach space of continuous real-valued functions on the

interval [−τ0, 0] with norm

||φ|| = sup
−τ≤θ≤0

|φ(θ)|, for φ ∈ C.

The non negative cone of C is defined as

C+ = C([−τ0, 0],R4
+).

The initial conditions for system (2) are chosen at t = 0 as

φ ∈ C+, φ = {φ1, φ2, φ3, φ4}, φi > 0, i = 1, 2, 3, 4.

Theorem 2.1. All solutions of system (2) are positive and bounded in C+, for

all t > 0. Furthermore, all solutions eventually enter and remain in the following

bounded region:

Γ =

{
(x, y, p, z) ∈ C+ :

∣∣∣∣∣∣∣∣x+ y +
1

2r
p+

µ

2kr
z

∣∣∣∣∣∣∣∣ ≤ s

q̃
+ ε

}
where q̃ = min{d, a

2
, b, c}, and ε is an arbitrarily small positive number.

Proof. It can easily show that x(t) is positive, we proceed by contradiction. Let t0

be the first value of time such that x(t0) = 0, so x(t) > 0 for all 0 ≤ t < t0. By the

first equation of the system (2) see that ẋ(t0) = s > 0 which is a contradiction to

x(t0) = 0, x(t) > 0 for all 0 ≤ t < t0. It follows that x(t) is always positive. With

a similar argument, we see that y(t), p(t) and z(t) are positive for t > 0.

Next we prove the ultimate boundedness of the solutions, we define

Ω(t) = x(t) + y(t+ τ1) +
1

2r
p(t+ τ1 + τ2) +

µ

2kr
z(t+ τ1 + τ2 + τ3)

and q̃ = min{d, a
2
, b, c}. By non-negativity of the solution, it follows that
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Ω̇(t) = s−
(
dx(t) +

a

2
y(t+ τ1) +

b

2r
p(t+ τ1 + τ2) +

µ

2kr
cz(t+ τ1 + τ2 + τ3)

)
< s− q̃Ω(t).

This implies that Ω(t) is bounded. Thus

lim
t→∞

(
x(t) + y(t+ τ1) +

1

2r
p(t+ τ1 + τ2) +

µ

2kr
z(t+ τ1 + τ2 + τ3)

)
≤ s

q̃
.

Therefore x(t), y(t), p(t) and z(t) are ultimately bounded in C+. �

The basic reproduction number:

The basic reproduction number, denoted R0, is ‘the expected number of

secondary cases produced, in a completely susceptible population, by a typical

infective individual’ [24]. If R0 < 1, then on average an infected individual

produces less than one new infected individual over the course of its infectious

period, and the infection cannot grow. Conversely, if R0 > 1, then each infected

individual produces, on average, more than one new infection, and the disease

can invade the population. Now, we will calculate the basic reproduction number

of the system (2). Let X = (x, y, p, z)T , then the system (2) can be written as

dX

dt
= F (X)− V (X),

where

F (X) =


βxp

0

0

0

 ,

V (X) =


ay

−ary + p+ µpz

−kpz + cz

−s+ dx

 .
We can get,

F =

0 βx0

0 0

 , V =

 a 0

−ar b

 .
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giving

V −1 =

1

a
0

r

b

1

b

 .
FV −1 is the next generation matrix for model (2). It then follows that the spectral

radius of matrix FV −1 is, ρ(FV −1) = R0 =
βsr

db
. According to Theorem 2 in [25],

the reproduction number of model (2) is

R0 =
βsr

db
. (3)

It is easy to see that if R0 < 1, then the pathogen free equilibrium I0(x0, 0, 0, 0)

(where x0 = s
d
) is the unique steady state, corresponding to the extinction of the

pathogen free equilibrium.

Now we have the following result for concerning the existence of equilibria.

Theorem 2.2. If R0 > 1, then the system (2) has a pathogen present equilibrium

I1(x∗, y∗, p∗, z∗) (i.e., x∗ > 0, y∗ > 0, p∗ > 0, z∗ > 0) where x∗, y∗, p∗ and z∗ are

given in the proof.

Proof. If R0 > 1, then the system (2) becomes as follows,

s− dx∗ − βx∗p∗ = 0,

βx∗p∗ − ay∗ = 0,

ary∗ − bp∗ − µp∗z∗ = 0,

kp∗z∗ − cz∗ = 0. (4)

From the above equation (4), we easily get

x∗ =
sk

kd+ βc
,

y∗ =
βc

ka
x∗,

p∗ =
c

k

z∗ =
1

µ

(kar
c
y∗ − b

)
.

Hence,the system (2) has a pathogen present equilibrium I1(x∗, y∗, p∗, z∗) if R0>1. �

Summarizing the above analysis, we have the following result.
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Theorem 2.3. Consider the system (2) with R0 defined in (3). If R0 < 1, then

there is unique equilibrium, which is the pathogen free equilibrium I0; while if R0>1,

then there is unique equilibrium, which is the pathogen present equilibrium I1.

3. Stability Analysis

We investigate stability of the equilibria and the Hopf bifurcation in this section.

First, we consider I0 is locally asymptotically stable. The characteristic equation

associated with the linearization of system (2) at I0 is given by

(−d− λ)(−c− λ){(−a− λ)(−b− λ)− βx0are
−λτ̄} = 0, (5)

where τ̄ = τ1 + τ2.

Obviously, we have

λ1 = −d < 0, λ2 = −c < 0

and we consider the equation

λ2 + λ(a+ b) + ab

(
1− βsr

db
e−λτ̄

)
= 0,

it implies that,

λ2 + λ(a+ b) + ab
(
1−R0e

−λτ̄) = 0. (6)

Theorem 3.1. The pathogen free equilibrium I0 of model (2) is globally

asymptotically stable when R0 < 1. If R0 > 1, I0 is unstable.

Proof. The characteristic equation (6) at the pathogen free equilibrium can be

rewritten as

(λ+ a)(λ+ b) = abR0e
−λτ̄ . (7)

If the eigenvalue of λ in (7) has a non-negative real part, then the modulus of the

LHS of (7) satisfies,

|(λ+ a)(λ+ b)| ≥ ab

while the modulus of the RHS of (7) satisfies |abR0e
−λτ̄ | < abR0 < ab.

This leads a contradiction to (7). Thus, all the eigenvalues of (7) have negative

real part and hence the pathogen free equilibrium I0 of the model (2) is locally

asymptotically stable when R0 < 1. �
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When R0 > 1, we define a function,

f(λ) = (λ+ a)(λ+ a)− abR0e
−λτ̄ .

It is clear that f(0) < 0 and f(λ)→∞ when λ→∞. By the continuity, we know

that, there exist at least one positive root when R0 > 1. Thus, the pathogen free

equilibrium I0 of the model (2) is is unstable when R0 > 1.

Next, we prove I0 is globally attractive in if R0 < 1. To prove this, we consider a

Lyapunov functional L : C → R given by

L(xt, yt, pt, zt) = xt(0)− x0 lnxt(0) + yt(0) +
1

r
pt(0) +

µ

rk
zt(0)

+β

∫ 0

−τ1
xt(θ)pt(θ)dθ + a

∫ 0

−τ2
yt(θ)dθ +

µ

r

∫ 0

−τ3
pt(θ)zt(θ)dθ

Here xt(s) = x(t+ s),for s ∈ [tau, 0],and thus x(t) = xt(0) in this notation.

Calculating the time derivative of L along solution of system(2), it follows that

L̇|(2) = ẋ(t)− x0 ln
ẋ(t)

x(t)
+ ẏ(t) +

1

r
ṗ(t) +

µ

rk
ż(t)

+β (x(t)p(t)− x(t− τ1)p(t− τ1)) + a (y(t)− y(t− τ2))

+
µ

r
(p(t)z(t)− p(t− τ3)z(t− τ3))

= s

(
2− x0

x(t)
− x

x0

)
+ p

(
β
s

d
− b

r

)
− µc

kr
z

= s

(
2− x0

x(t)
− x

x0

)
+
b

r
(R0 − 1) p− µc

kr
z

R0 < 1 ensures that L̇|(2) ≤ 0 and L̇ = 0 if and only if

x(t) = x0, y(t) = 0, p(t) = 0, z(t) = 0,

it can be verified that the maximal invariant set in L̇|(2) = 0 is the set

U = {(x0, 0, 0, 0)}.

By the LaSalle-Lyapunov theorem, we conclude that U is globally attractive in Γ

if R0 < 1. So I0 is globally attractive in Γ. Therefore, I0 is globally asymptotically

stable in Γ.
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3.1. Dynamics when R0 > 1. When R0 > 1, there exists a pathogen present

equilibrium

x∗ =
sk

kd+ βc
, y∗ =

βc

ka
x∗, p∗ =

c

k
, z∗ =

1

µ

(
kar

c
y∗ − b

)
.

The characteristic equation associated with the linearization of system (2) at I1

is given by

λ4 + A1λ
3 + A2λ

2 + A3λ+ A4 + e−λτ3(B1λ
3 +B2λ

2 +B3λ+B4)

−e−λ(τ1+τ2)(C1λ
2+C2λ+C3) + e−λ(τ2+τ3)(D1λ+D2)−e−λ(τ1+τ2+τ3)(E1λ+ E2) = 0 (8)

where

A1 = a+ b+ c+ d+ βp∗ + µz∗;

A2 = a(d+ βp∗) + (a+ d+ βp∗)(b+ µz∗ + c) + c(b+ µz∗);

A3 = a(d+ βp∗)(b+ µz∗ + c) + (a+ d+ βp∗)c(b+ µz∗);

A4 = ac(d+ βp∗)(b+ µz∗);

B1 = kp∗;

B2 = kp∗(a+ b+ d+ βp∗ + 2µz∗);

B3 = kp∗(a(d+ βp∗) + (a+ d+ βp∗)b+ 2µz∗(a+ d+ βp∗));

B4 = kp∗(a(d+ βp∗)(b+ µz∗) + aµz∗(d+ βp∗));

C1 = βx∗ar;

C2 = βx∗ar(c+ d);

C3 = βx∗ar(cd);

D1 = a2rkz∗;

D2 = a2rkz∗(d+ βp∗);

E1 = βx∗arkp∗;

E2 = βx∗arkp∗(d+ βp∗)− β2x∗arx∗kp∗2.
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Local stability and Hopf Bifurcation:

Consider the case for τ1 = τ2 = 0 and τ3 > 0, then the equation (2) becomes as

follows:

ẋ = s− dx− βxp,

ẏ = βxp− ay,

ṗ = ary − bp− µpz,

ż = kp(t− τ3)z(t− τ3)− cz, (9)

The characteristic equation of (9) at I1 is given by

λ4 + A1λ
3 + A2λ

2 + A3λ+ A4 + e−λτ3(B1λ
3 +B2λ

2 +B3λ+B4)

−(C1λ
2 + C2λ+ C3) + e−λτ3(D1λ+D2)− e−λτ3(E1λ+ E2) = 0, (10)

that implies that,

λ4 + A1λ
3 + (A2 − C1)λ2 + (A3 − C2)λ+ A4 − C3

+e−λτ3{B1λ
3 +B2λ

2 + (B3 +D1 − E1)λ+ (B4 +D2 − E2)} = 0. (11)

When τ3 = 0, (11) becomes

λ4 + (A1 +B1)λ3 + (A2 +B2 − C1)λ2 + (A3 +B3 +D1 − C2 − E1)λ

+(A4 +B4 +D2 − C3 − E2) = 0. (12)

Which is equivalent to

λ4 + ν1λ
3 + ν2λ

2 + ν3λ+ ν4 = 0,

where
ν1 = A1 +B1;

ν2 = A2 +B2 − C1;

ν3 = A3 +B3 +D1 − C2 − E1;

ν4 = A4 +B4 +D2 − C3 − E2;

and ν1ν2ν3>ν
2
3 +ν2

1ν4, i.e., ν1ν2ν3−ν2
3−ν2

1ν4>0. By the Routh-Hurwitz criteria, all

roots of this equation have negative real parts. Clearly, 0 is not the root of (11).
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3.2. Criterion for preservation of stability or instability and bifurcation

results. Now, we put λ = γ(τ3) + iω(τ3) in equation (11) and to determine the

change of stability of I1 of (2) for some τ3 for which γ(τ3) = 0, ω(τ3) 6= 0, i.e.,., when

λ will be purely imaginary. Let τ ∗3 be such that γ(τ ∗3 ) = 0 and ω(τ ∗3 ) = ω0 6= 0.

In this case the steady state loses stability and eventually become unstable when

γ(τ ∗3 ) becomes positive. However, if such a ω(τ ∗3 ) does not exists i.e. if λ be not

purely imaginary for τ3 = τ ∗3 , then I1 of (2) is always stable. We will show that it

is the case with equation (11). Now we let λ = iω be a purely imaginary in (11)

reduce to

ω4 − ω2(A2 − C1) + A4 − C3 = (B2ω
2 − (B4 +D2 − E2)) cos(ωτ3)

+ (B1ω
3 − ω(B3 +D1 − E1)) sin(ωτ3), (13)

ω(A3 − C2)− ω3A1 = −(B2ω
2 − (B4 +D2 − E2)) sin(ωτ3)

+ (B1ω
3 − ω(B3 +D1 − E1)) cos(ωτ3). (14)

Now squaring and adding above equation (13) and (14) we get,

ω8 + f1ω
6 + f2ω

4 + f3ω
2 + f1 = 0. (15)

Putting ω2 = u∗ into (15), we can get the following equation:

F (u∗) = u∗4 + f1u
∗3 + f2u

∗2 + f3u
∗ + f4 = 0, (16)

where

f1 = A2
1 − 2(A2 − C1)−B2

1 ;

f2 = (A2 − C1)2 + 2(A4 − C3)− 2A1(A3 − C2)−B2
2 + 2B1(B3 +D1 − E1);

f3 = (A3 − C2)2 − 2(A2 − C1)(A4 − C3) + 2B2(B4 +D2 − E2)− (B3 +D1 − E1)2;

f4 = (A4 − C3)2 − (B4 +D2 − E2)2,

Taking derivative with respect to u∗ of equation (16), we get

Ḟ (u∗) = 4u∗3 + 3u∗2f1 + 2u∗f2 + f3 = 0, (17)

Set

4u∗3 + 3u∗2f1 + 2u∗f2 + f3 = 0. (18)
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Let m∗ = u∗ +
f1

4
, then (18) becomes

m∗3 + α1m
∗ + α2 = 0, (19)

where

α1 =
f2

2
− 3f 2

1

16
, α2 =

f 3
1

32
− f1f2

8
+
f3

4
.

Define

∆ =
(α2

2

)2

+
(α1

3

)3

; δ =
−1 + i

√
3

2
;

m∗1 = 3

√
−α2

2
+
√

∆ + 3

√
−α2

2
−
√

∆;

m∗2 = 3

√
−α2

2
+
√

∆δ + 3

√
−α2

2
−
√

∆δ2;

m∗3 = 3

√
−α2

2
+
√

∆δ2 + 3

√
−α2

2
−
√

∆δ;

u∗i = m∗i −
f1

4
, i = 1, 2, 3.

We cite the results in [26] about the existence of positive roots of the fourth-degree

polynomial equation, namely, we have the following lemma.

Lemma 3.2. (1) If f4 < 0, then (16) has at least one positive root.

(2) If f4 ≥ 0 and ∆ ≥ 0 then (16) has positive roots if and only if u1 > 0 and

F (u1) < 0.

(3) If f4 ≥ 0 and ∆ < 0, then (16) has positive roots if and only if there exists

at least one u∗ ∈ {u1, u2, u3} such that u∗ > 0 and F (u∗) < 0.

Supposing one of the above three cases in Lemma 5, is satisfied, (16) has finite

positive rootss u1, u2, u3, ..., uk, k ≤ 4. Therefore (15) has finite positive roots.

ω1 =
√
u1, ω2 =

√
u2, ..., ωk =

√
uk, k ≤ 4.

For every fixed ωi(i = 1, 2, ...k), k ≤ 4), there exists a sequence

τ j3i =
1

ωi
arccos

(
η1

η2

)
where j = 0, 1, 2, ..., i = 1, 2, ..., k, k ≤ 4,
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where

η1 = ω∗4i − (A2 − C1)ω∗2i + A4 − C3)(B2ω
∗2
i + E2 − (B4 +D2))

+(−A1ω
∗3
i + (A3 − C2)ωi)(B1ω

∗3
i + E1 − (B3 +D1)ωi

η2 = (B1ω
3
i − E1 +B3 +D1ωi)

2 + (−B2ω
2
i +B4 +D2 − E2)2.

Now, we determine sign

(
dRe(λ)

dτ3

)∣∣∣∣
τ3=τ∗3

where sign is the signum function and

Re(λ) is a real part of λ. By using the following mathematical calculation we can

say that the pathogen present equilibrium of model (2) remains stable for τ3 < τ ∗3

and Hopf bifurcation occurs when τ3 = τ ∗3 .

After some findings, we get the following lemma.

Lemma 3.3.(
dRe(λ)

dτ3

)−1
∣∣∣∣∣
τ3=τ j3i

=
Ḟ (ωi)

2

(B1ω3 − E1 +B3 +D1ω)2 + (−B2ω2 +B4 +D2 − E2)2

Especially,supposing Ḟ ((ω)∗2) 6= 0, then(
dRe(λ)

dτ3

)−1
∣∣∣∣∣
τ3=τ∗3

=
Ḟ (ω∗2)

(B1ω∗3 − E1 +B3 +D1ω∗)2 + (−B2ω∗2 +B4 +D2 − E2)2
> 0.

�

From Lemma 6, we can get the following result.

Theorem 3.4. For the system (9), there exists τ ∗3 = min{τ 0
3i|i = 1, 2, ..., k, k ≤ 4},

such that I1 is asymptotically stable, when τ3 ∈ [0, τ ∗3 ). Furthermore, if Ḟ (ω∗2) 6= 0

holds, and system (11) undergoes a Hopf bifurcation at I1 when τ3 = τ ∗3 .

Remark 3.5. We find that incorporating an immune delay can destroy the global

intractability of I1 on proper conditions when R0 > 1, and a Hopf bifurcation

occurs. That is, a periodic oscillation appears. Stability switches can appear when

k ≥ 2. Those results show immune delay dominates intracellular delays in this

class of pathogen infection models. Those indicate the human immune system has

a special effect in pathogen infection models with a CTLs response, and the human

immune system itself is very complicated.
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Theorem 3.6. If R0 > 1, then the pathogen free equilibrium I0 of (2) is unstable

and the pathogen present equilibrium I1 of (2) is globally asymptotically stable.

Proof. Let

g(u) = u− 1− lnu, u > 0.

Define Lyapunov functional U : C → R given by

U1(xt, yt, pt, zt) = x∗g

(
xt(0)

x∗

)
+ y∗g

(
yt(0)

y∗

)
+

1

r
p∗g

(
pt(0)

p∗

)
+

µ

kr
z∗g

(
zt(0)

z∗

)
+ βx∗p∗

∫ 0

−τ1
g

(
xt(θ)pt(θ)

x∗p∗

)
dθ + ay∗

∫ 0

−τ2
g

(
yt(θ)

y∗

)
dθ

+
µ

r
p∗z∗

∫ 0

−τ3
g

(
pt(θ)zt(θ)

p∗z∗

)
dθ

Calculating the time derivative of U1 along solution of system (2), it follows that

U̇1|(2) = ẋ(t)

(
1− x∗

x(t)

)
+ ẏ(t)

(
1− y∗

y(t)

)
+

1

r
ṗ(t)

(
1− p∗

p(t)

)
+

µ

kr
ż(t)

(
1− z∗

z(t)

)
+ βx∗p∗

(
x(t)p(t)− x(t− τ1)p(t− τ1)

x∗p∗
− ln

x(t)p(t)

x∗p∗

+ ln
x(t− τ1)p(t− τ1)

x∗p∗

)
+ ay∗

(
y(t)− y(t− τ2)

y∗
+ ln

y(t− τ2)

y(t)

)
+
µ

r
p∗z∗

(p(t)z(t)− p(t− τ3)z(t− τ3)

p∗z∗
− ln

p(t)z(t)

p∗z∗
+ ln

p(t− τ3)z(t− τ3)

p∗z∗

)
.

Using

s = dx∗ + βx∗p∗, ay∗ = βx∗p∗, p∗ =
c

k
, y∗ =

(b+ µz∗)c

ark
.

It follows that

U̇1|(2) = dx∗
(

2− x

x∗
− x∗

x

)
+ βx∗p∗

(
1− x∗

x
+ ln

x∗

x

)
− βx∗p∗ ln

x∗

x

+ βx∗p∗
(

1− y∗x(t− τ1)p(t− τ1)

x∗p∗y
+ ln

y∗x(t− τ1)p(t− τ1)

x∗p∗y

)
− βx∗p∗y

∗x(t− τ1)p(t− τ1)

x∗p∗y
− βx∗p∗ − ay∗ + ay∗

(
1− y(t− τ2)p∗

y∗p

+ ln
y(t− τ2)p∗

y∗p
− ln

y∗p

yp∗

)
− βx∗p∗ ln

xp

x∗p∗
+ βx∗p∗ ln

x(t− τ1)p(t− τ1)

x∗p∗
− µ

r
p∗

+
µ

r
p∗
(

1− p(t− τ3)z(t− τ3)z∗

zp∗
+ ln

p(t− τ3)z(t− τ3)z∗

zp∗

)
− µ

r
p∗ ln

p(t− τ3)z(t− τ3)z∗

zp∗
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= dx∗
(

2− x

x∗
− x∗

x

)
− βx∗p∗g

(
x∗

x

)
− βx∗p∗g

(
y∗x(t− τ1)p(t− τ1)

x∗p∗y

)
− ay∗g

(
y(t− τ2)p∗

y∗p

)
− ay∗ ln

y∗p

yp∗
− µ

r
p∗g

(
p(t− τ3)z(t− τ3)z∗

zp∗

)
≤ 0.

This implies that

U̇1|(2) = 0⇔ x(t) = x∗, y(t) = y∗, p(t) = p∗, z(t) = z∗.

and thus the maximal invariant set in the set {U̇1 = 0} is the singleton {I1}.
Therefore, I1 is globally attractive. Hence the pathogen present equilibrium

(x∗, y∗, p∗, z∗) of model (2) is globally asymptotically stable when R0 > 1, in the

case of τ3 < τ ∗3 . �

4. Conclusion

In this paper, we have proposed and analyzed a model for pathogen-immune

interaction dynamics with intracellular time delays. We point out the essential

differences between our results and the results in [21]. In their model shows that

local stability analysis for pathogen immune interaction. But our model shows

that global asymptotic stability of the pathogen present equilibrium in the

presence of immune delay. The positive immune delay, τ3 is able to destabilize

the pathogen present equilibrium. We showed that for this simplified model (9),

pathogen present equilibrium equilibrium is locally asymptotically stable for

τ3 < τ ∗3 and bifurcation leads when τ3 = τ ∗3 . Further we show that bifurcation

analysis at τ3 = τ ∗3 and proofs on this issue are needed and we will concern about

this problem in our further studies.
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