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1. Introduction

The stability problem of functional equations has a long history. Stability is

investigated when one concerns whether a small error of parameters causes a large

deviation of the solution. Generally speaking, given a function which satisfies a

functional equation approximately called a approximate solution, we ask: Is there

a solution of this equation which is close to the approximate solution in some

accuracy? An earlier work was done by Hyers [6] in order to answer Ulam’s

equation [18] on approximately additive mappings.

During last decades various stability problems for large variety of functional

equations have been investigated by several mathematicians. A large list of

references concerning in the stability of functional equations can be found.

e.g.( [1], [2], [6], [7], [8], [10]).

In 2010, Liguang Wang, Bo Liu and ran Bai [9] proved the stability of a mixed

type functional equations on Multi - Banach Spaces. In 2010, Tian Zhou Xu, John

Michael Rassias, Wan Xin Xu [17] investigated the generalized Ulam-Hyers

stability of the general mixed additive-quadratic-cubic-quartic functional equation

f(x+ ny) + f(x− ny) = n2f(x+ y) + n2f(x− y) + 2(1− n2)f(x)

+
n4 − n2

12
[f(2y) + f(−2y)− 4f(y)− 4f(−y)]
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Abstract. In this paper, we establish the Hyers-Ulam stability of the following

Orthogonally Additive-Quadratic functional equation in Multi-Banach Spaces.

ζ(2i+ j)− ζ(i+ 2j)− ζ(i+ j)− ζ(j − i)− ζ(i) + ζ(j) + ζ(2j) = 0

with i⊥j where, ⊥ is orthogonality in the sense of Ratz.
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for fixed integers n with n 6= 0,±1 in Multi- Banach Spaces.

In 2011, Zhihua Wang, Xiaopei Li and Th. M. Rassias[21] proved the Hyers -

Ulam stability of the additive - cubic - quartic functional equations

11 [f(x+ 2y) + f(x− 2y)] = 44 [f(x+ y) + f(x− y)] + 12f(3y)

− 48f(2y) + 60f(y)− 66f(x)

in Multi - Banach Spaces by using fixed point method.

In 2013, Fridoun Moradlou [5] proved the generalized Hyers-Ulam-Rassias

stability of the Euler-Lagrange-Jensen Type Additive mapping in Multi-Banach

Spaces. In 2015, Xiuzhong Yang, Lidan Chang, Guofen Liu[19] estabilished the

orthogonal stability of mixed additive-quadratic jensen type functional equation in

Multi-Banach Spaces.

In 2015,Young Ju Jeon and Chang Il Kim [20] investigated the following

additive -quadratic functional equation

f(2x+ y)− f(x+ 2y)− f(x+ y)− f(y − x)− f(x) + f(y) + f(2y) = 0

in orthogonality space by using fixed point method.

In 2016, R. Murali, M. Deboral and A. Antony Raj [12] proved the Hyers-Ulam

stability of the additive-cubic functional equation

f(2x+ y) + f(2x− y)− f(4x) = 2f(x+ y) + 2f(x− y)− 8f(2x) + 10f(x)− 2f(−x)

for all x, y with x⊥y. in orthogonal space.

In 2016, Sattar Alizadeh, Fridoun Moradlou [16] proved the generalized

Hyers-Ulam-Rassias stability of the quadratic mapping in multi-Banach spaces.

In this paper, we achieve the stability of the orthogonally Additive-Quadratic

functional equation

ζ(2i+ j)− ζ(i+ 2j)− ζ(i+ j)− ζ(j − i)− ζ(i) + ζ(j) + ζ(2j) = 0 (1)

with i⊥j in Multi-Banach Spaces.

It is easy to see that the function ζ(i) = ai2 + bi is a solution of (1).
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Theorem 1.1. [3], [14] Let (X , d) be a complete generalized metric space and let

J : X → X be a strictly contractive mapping with Lipschitz constant L < 1. Then

for each given element x ∈ X , either

d(J nx,J n+1x) =∞

for all nonnegative integers n or there exists a positive integer n0 such that

(i) d(J nx,J n+1x) <∞ for all n ≥ n0;

(ii) The sequence {J nx} is convergent to a fixed point y∗ of J ;
(iii) y∗ is the unique fixed point of T in the set Y = {y ∈ X : d(J n0x, y) <∞};
(iv) d(y, y∗) ≤ 1

1−Ld(y,J y) for all y ∈ Y..

Now, let us recall some concepts concerning Multi-Banach spaces.

Let (℘, ‖.‖) be a complex normed space, and let k ∈ N. We denote by ℘k the linear

space ℘ ⊕ ℘ ⊕ ℘ ⊕ ... ⊕ ℘ consisting of k− tuples (x1, ..., xk) where x1, ..., xk ∈ ℘.
The linear operations on ℘k are defined coordinate wise. The zero element of either

℘ or ℘k is denoted by 0. We denote by Nk the set {1, 2, ..., k} and by Ψk the group

of permutations on k symbols.

Definition 1.2. [4] A Multi- norm on
{
℘k : k ∈ N

}
is a sequence

(‖.‖) = (‖.‖k : k ∈ N) such that ‖.‖k is a norm on ℘k for each k ∈ N, ‖x‖1 = ‖x‖
for each x ∈ ℘, and the following axioms are satisfied for each k ∈ N with k ≥ 2 :

(1)
∥∥(xσ(1), ..., xσ(k))∥∥k = ‖(x1...xk)‖k , for σ ∈ Ψk, x1, ..., xk ∈ ℘;

(2) ‖(α1x1, ..., αkxk)‖k ≤ (maxi∈Nk
|αi|) ‖(x1...xk)‖k

for α1...αk ∈ C, x1, ..., xk ∈ ℘;

(3) ‖(x1, ..., xk−1, 0)‖k = ‖(x1, ..., xk−1)‖k−1 , for x1, ..., xk−1 ∈ ℘;

(4) ‖(x1, ..., xk−1, xk−1)‖k = ‖(x1, ..., xk−1)‖k−1 for x1, ..., xk−1 ∈ ℘.

In this case, we say that
(
(℘k, ‖.‖k) : k ∈ N

)
is a multi - normed space.

Suppose that
(
(℘k, ‖.‖k) : k ∈ N

)
is a multi - normed spaces, and take k ∈ N. We

need the following two properties of multi - norms. They can be found in [4].

(a) ‖(x, ...x)‖k = ‖x‖ , for x ∈ ℘,

(b) max
i∈Nk

‖xi‖ ≤ ‖(x1, ..., xk)‖k ≤
k∑
i=1

‖xi‖ ≤ kmax
i∈Nk

‖xi‖ , for x1, ..., xk ∈ ℘.
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It follows from (b) that if (℘, ‖.‖) is a Banach space, then (℘k, ‖.‖k) is a Banach

space for each k ∈ N; In this case,
(
(℘k, ‖.‖k) : k ∈ N

)
is a multi - Banach space.

Lemma 1.3. [4] Suppose that k ∈ N and (x1...xk) ∈ ℘k. For each j ∈ {1...k} , let
(xjn)n=1,2... be a sequence in ℘ such that limn→∞ x

j
n = xj. Then

lim
n→∞

(
x1n − y1, ..., xkn − yk

)
= (x1 − y1...xk − yk) (2)

holds for all (y1, ..., yk) ∈ ℘k.

Definition 1.4. [4] Let
(
(℘k, ‖.‖k) : k ∈ N

)
be a multi - normed space. A sequence

(xn) in ℘ is a multi-null sequence if for each η > 0, there exists n0 ∈ N such that

sup
k∈N
‖(xn, ..., xn+k−1)‖k ≤ η (n ≥ n0) . (3)

Let x ∈ ℘, we say that the sequence (xn) is multi-convergent to x in ℘ and write

limn→∞ xn = x if (xn − x) is a multi - null sequence.

There are several orthogonality notations on a real normed spaces available. But

here, we present the orthogonal concept introduced by Ratz [13].

This is given in the following definition.

Definition 1.5. Suppose that X is a vector space (algebraic module) with

dimX ≥ 2, and ⊥ is a binary relation on X with the following properties:

(1) Totality of ⊥ for zero: x⊥0, 0⊥x for all x ∈ X;

(2) Independence: If x, y ∈ X − {0} and x⊥y, then x and y are linearly

independent;

(3) Homogeneity: If x, y ∈ X and x⊥y, then αx⊥βy for all α, β ∈ R;

(4) Thalesian properity: If P is a 2-dimensional subspace of X, x ∈ P and

λ ∈ R+ which is the set of non-negative real numbers, then there exists

y0 ∈ P such that x⊥y0 and x+ y0⊥λx− y0.

The pair (X,⊥) is called an orthogonality space (resp., module). By an orthogonality

normed space (normed module) we mean an orthogonality space (resp., module)

having a normed (resp., normed module) structure.
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Definition 1.6. Let X be a set. A function d : X × X → [0,∞] is called a

generalized metric on X if and only if d satisfies

• d(x, y) = 0 if and only if x = y;

• d(x, y) = d(y, x) for all x, y ∈ X;

• d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.7. Let S be an orthogonality space and let
(
(T k, ‖.‖) : K ∈ N

)
be a

multi-Banach space. Suppose that η is a nonnegative real number and ζ : S → T is

a mapping satisfying

sup
k∈N
‖(Dζ(i1, j1), ..., Dζ(ik, jk))‖k ≤ η (4)

i1, ..., ik, j1, ..., jk ∈ S and ix⊥jx (x = 1, 2...k) and f(0) = 0. Then there exists a

unique Orthogonally Additive mapping A : S → T such that

sup
k∈N
‖(ζ(i1)−A(i1), ..., ζ(ik)−A(ik))‖k ≤ η (5)

i1, i2, ..., ik ∈ S.

Proof. Let Λ = {g : S → T |g(0) = 0} and introduce the generalized metric d defined

on Λ by

d(u, v) = inf

{
λ ∈ [0,∞]| sup

k∈N
‖(u(j1)− v(j1), ..., u(jk)− v(jk))‖k ≤ λ ∀ j1, ..., jk ∈ S

}
Then it is easy to show that (Λ, d) is a generalized complete metric space [11].

We define an operator J : Λ→ Λ by

J u(j) =
1

2
u(2j) j ∈ S

We assert that J is a strictly contractive operator. Given u, v ∈ Λ, let λ ∈ [0,∞]

be an arbitary constant with d(u, v) ≤ λ. By the definition

sup
k∈N
‖(u(j1)− v(j1), ..., u(jk)− v(jk))‖k ≤ λ j1, ..., jk ∈ S.
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Therefore,

sup
k∈N
‖(J u(j1)− J v(j1), ...,J u(jk)− J v(jk))‖k

≤ sup
k∈N

∥∥∥∥(1

2
u(2j1)−

1

2
v(2j1), ...,

1

2
u(2jk)−

1

2
v(2jk)

)∥∥∥∥
k

≤ 1

2
λ

j1, ..., jk ∈ S. Hence,it holds that

d(J u,J v) ≤ 1

2
λd(J u,J v) ≤ 1

2
d(u, v)

∀u, v ∈ Λ.

Letting j1 = j2 =, ...,= jk = 0 in (4), we obtain that

sup
k∈N
‖(ζ(2j1)− 2ζ(j1), ..., ζ(2jk)− 2ζ(2jk))‖k ≤ η (6)

for all ix ∈ S, ix⊥0 (x = 1, 2, ..., k).

Dividing on both sides 2 by (6), we can get

sup
k∈N

∥∥∥∥(ζ(j1)−
1

2
ζ(2j1), ..., ζ(jk)−

1

2
ζ(2jk)

)∥∥∥∥
k

≤ 1

2
η (7)

This Means that J is strictly contractive operator on Λ with the Lipschitz constant

L =
1

2
.

By (7), we have d(J ζ, ζ) ≤ 1

2
η < ∞. According to Theorem 1.1, we deduce the

existence of a fixed point of J that is the existence of mapping A : S → T such that

A(2j) = 2A(j) ∀j ∈ S.

Moreover, we have d (J nζ,A)→ 0, which implies

A(q) = lim
n→∞

J nζ(j) = lim
n→∞

ζ(2nj)

2n

for all q ∈ S.
Also, d(ζ,A) ≤ 1

1− L
d(J ζ, ζ) implies the inequality
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d(ζ,A) ≤ 1

1− 1

2

d(J ζ, ζ)

≤ η.

Considering Definition 1.5, we have 2ni⊥2nj. Set

i1 =, ...,= ik = 2ni, j1 =, ...,= jk = 2nj

in (4) and divide both sides by 2n. Then, using property (a) of multi-norms, we

obtain

‖DA(i, j)‖ = lim
n→∞

1

2n
‖Dζ (2ni, 2nj)‖

≤ lim
n→∞

η

2n
= 0

for all i, j ∈ S. Hence A is Additive.

The uniqueness of A follows from the fact that A is the unique fixed point of J
with the property that there exists ` ∈ (0,∞) such that

sup
k∈N
‖(ζ(i1)−A(i1), ..., ζ(ik)−A(ik))‖k ≤ `

for all i1, ..., ik ∈ S.
This completes the proof of the Theorem. �

Theorem 1.8. Let S be an orthogonality space and let
(
(T k, ‖.‖) : K ∈ N

)
be a

multi-Banach space. Suppose that η is a nonnegative real number and ζ : S → T

is a mapping satisfying the inequality (4). Then there exists a unique Orthogonally

Quadratic mapping Q : S → T such that

sup
k∈N
‖(ζ(i1)−Q(i1), ..., ζ(ik)−Q(ik))‖k ≤

1

3
η (8)

i1, i2, ..., ik ∈ S.

Proof. By (6), we obtain

‖(ζ(2i1)− 4ζ(i1), ..., ζ(2ik)− 4ζ(ik))‖k ≤ η (9)
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Dividing on both side 4 by (9), we can get∥∥∥∥(ζ(i1)−
1

4
ζ(2i1), ...., ζ(ik)−

1

4
ζ(2ik)

)∥∥∥∥
k

≤ 1

4
η (10)

By (10), we have we have d(J ζ, ζ) ≤ 1

4
η <∞.

Also, d(ζ,Q) ≤ 1

1− L
d(J ζ, ζ) implies the inequality

d(ζ,Q) ≤ 1

1− 1

4

d(J ζ, ζ)

≤ 1

3
η.

The rest of the proof is similar to that of Theorem 1.7. �

Theorem 1.9. Let S be an an orthogonality space and let
(
(T k, ‖.‖) : K ∈ N

)
be a

multi-Banach space. Suppose that η ≥ 0 and ζ : S → T is an mapping satisfying

sup
k∈N
‖(Dζ(i1, j1), ..., Dζ(ik, jk))‖k ≤ η (11)

∀i1, ..., ik, j1, ..., jk ∈ S. Then there exist a unique orthogonally additive mapping

A : S → T and a unique orthogonally quadratic mapping Q : S → T such that

sup
k∈N
‖(ζ(i1)−A(i1)−Q(i1), ..., ζ(ik)−A(ik)−Q(ik))‖k ≤

4

3
η (12)

∀i1, i2, ..., ik ∈ S.

Proof. By Theorem 1.7, 1.8 there exist a unique additive mapping A0 : S → T and

a unique quadratic mapping Q0 : S → T such that

sup
k∈N
‖(ζ(i1)−A0(i1), ..., ζ(ik)−A0(ik))‖k ≤ η (13)

and

sup
k∈N
‖(ζ(i1)−Q0(i1), ..., ζ(ik)−Q0(ik))‖k ≤

1

3
η (14)

for all i1, ..., ik ∈ S. Now from (13) and (14), we get

sup
k∈N
‖(ζ(i1) +A0(i1)−Q0(i1), ..., ζ(ik) +A0(ik)−Q0(ik))‖k ≤

4

3
η (15)

for all i1, ..., ik ∈ S. Thus we obtain (12) by defining A(i) = −A0(i) and

Q(i) = Q0(i). The uniqueness of A and Q is easy to show. �
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