

Journal of Computational Mathematica

Journal homepage: www.shcpub.edu.in

Stability of Orthogonally Additive-Quadratic Functional Equation in Multi-Banach Spaces

${ }^{1}$ R. Murali and ${ }^{2}$ A. Antony Raj

Received on 17 Feb 2017, Accepted on 08 April 2017
Abstract. In this paper, we establish the Hyers-Ulam stability of the following Orthogonally Additive-Quadratic functional equation in Multi-Banach Spaces.

$$
\zeta(2 i+j)-\zeta(i+2 j)-\zeta(i+j)-\zeta(j-i)-\zeta(i)+\zeta(j)+\zeta(2 j)=0
$$

with $i \perp j$ where, \perp is orthogonality in the sense of Ratz.

1. Introduction

The stability problem of functional equations has a long history. Stability is investigated when one concerns whether a small error of parameters causes a large deviation of the solution. Generally speaking, given a function which satisfies a functional equation approximately called a approximate solution, we ask: Is there a solution of this equation which is close to the approximate solution in some accuracy? \square An earlier work was done by Hyers [6] in order to answer Ulam's equation [18] on approximately additive mappings.

During last decades various stability problems for large variety of functional equations have been investigated by several mathematicians. A large list of referencestoncerning in the stability of functional equations can be found. e.g.([1], [2], [6], [7], [8], [10]).

In 2010, Liguang Wang, Bo Liu and ran Bai [9] proved the stability of a mixed type functional equations on Multi - Banach Spaces. In 2010, Tian Zhou Xu, John Michael Rassias, Wan Xin Xu [17] investigated the generalized Ulam-Hyers stability of the general mixed additive-quadratic-cubic-quartic functional equation

$$
\begin{aligned}
f(x+n y)+f(x-n y) & =n^{2} f(x+y)+n^{2} f(x-y)+2\left(1-n^{2}\right) f(x) \\
& +\frac{n^{4}-n^{2}}{12}[f(2 y)+f(-2 y)-4 f(y)-4 f(-y)]
\end{aligned}
$$

[^0]for fixed integers n with $n \neq 0, \pm 1$ in Multi- Banach Spaces.
In 2011, Zhihua Wang, Xiaopei Li and Th. M. Rassias[21] proved the Hyers Ulam stability of the additive - cubic - quartic functional equations
\[

$$
\begin{aligned}
11[f(x+2 y)+f(x-2 y)] & =44[f(x+y)+f(x-y)]+12 f(3 y) \\
& -48 f(2 y)+60 f(y)-66 f(x)
\end{aligned}
$$
\]

in Multi - Banach Spaces by using fixed point method.
In 2013, Fridoun Moradlou [5] proved the generalized Hyers-Ulam-Rassias stability of the Euler-Lagrange-Jensen Type Additive mapping in Multi-Banach Spaces. In 2015, Xiuzhong Yang, Lidan Chang, Guofen Liu[19] estabilished the orthogonal stability of mixed additive-quadratic jensen type functional equation in Multi-Banach Spaces.

In 2015, Young Ju Jeon and Chang Il Kim [20] investigated the following additive -quadratic functional equation

$$
f(2 x+y)-f(x+2 y)-f(x+y)-f(y-x)-f(x)+f(y)+f(2 y)=0
$$

in orthogonality space by using fixed point method.
In 2016, R. Murali, M. Deboral and A. Antony Raj [12] proved the Hyers-Ulam stability of the additive-cubic functional equation
$f(2 x+y)+f(2 x-y)-f(4 x)=2 f(x+y)+2 f(x-y)-8 f(2 x)+10 f(x)-2 f(-x)$
for all x, y with $x \perp y$. in orthogonal space.
In 2016, Sattar Alizadeh, Fridoun Moradlou [16] proved the generalized Hyers-Ulam-Rassias stability of the quadratic mapping in multi-Banach spaces.

In this paper, we achieve the stability of the orthogonally Additive-Quadratic functional equation

$$
\begin{equation*}
\zeta(2 i+j)-\zeta(i+2 j)-\zeta(i+j)-\zeta(j-i)-\zeta(i)+\zeta(j)+\zeta(2 j)=0 \tag{1}
\end{equation*}
$$

with $i \perp j$ in Multi-Banach Spaces.
It is easy to see that the function $\zeta(i)=a i^{2}+b i$ is a solution of (11).

Theorem 1.1. [3], 14] Let (\mathcal{X}, d) be a complete generalized metric space and let $\mathcal{J}: \mathcal{X} \rightarrow \mathcal{X}$ be a strictly contractive mapping with Lipschitz constant $\mathcal{L}<1$. Then for each given element $x \in \mathcal{X}$, either

$$
d\left(\mathcal{J}^{n} x, \mathcal{J}^{n+1} x\right)=\infty
$$

for all nonnegative integers n or there exists a positive integer n_{0} such that
(i) $\quad d\left(\mathcal{J}^{n} x, \mathcal{J}^{n+1} x\right)<\infty$ for all $n \geq n_{0}$;
(ii) The sequence $\left\{\mathcal{J}^{n} x\right\}$ is convergent to a fixed point y^{*} of \mathcal{J};
(iii) y^{*} is the unique fixed point of T in the set $Y=\left\{y \in X: d\left(\mathcal{J}^{n_{0}} x, y\right)<\infty\right\}$;
(iv) $d\left(y, y^{*}\right) \leq \frac{1}{1-\mathcal{L}} d(y, \mathcal{J} y)$ for all $y \in Y$..

Now, let us recall some concepts concerning Multi-Banach spaces.
Let $(\wp,\|\|$.$) be a complex normed space, and let k \in \mathbb{N}$. We denote by \wp^{k} the linear space $\wp \oplus \wp \oplus \wp \oplus \ldots \oplus \wp$ consisting of k - tuples $\left(x_{1}, \ldots, x_{k}\right)$ where $x_{1}, \ldots, x_{k} \in \wp$. The linear operations on \wp^{k} are defined coordinate wise. The zero element of either \wp or \wp^{k} is denoted by 0 . We denote by \mathbb{N}_{k} the set $\{1,2, \ldots, k\}$ and by Ψ_{k} the group of permutations on k symbols.

Definition 1.2. 4] A Multi- norm on $\left\{\wp^{k}: k \in \mathbb{N}\right\}$ is a sequence $(\|\cdot\|)=\left(\|\cdot\|_{k}: k \in \mathbb{N}\right)$ such that $\|\cdot\|_{k}$ is a norm on \wp^{k} for each $k \in \mathbb{N},\|x\|_{1}=\|x\|$ for each $x \in \wp$, and the following axioms are satisfied for each $k \in \mathbb{N}$ with $k \geq 2$:
(1) $\left\|\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right)\right\|_{k}=\left\|\left(x_{1} \ldots x_{k}\right)\right\|_{k}$, for $\sigma \in \Psi_{k}, x_{1}, \ldots, x_{k} \in \wp ;$
(2) $\left\|\left(\alpha_{1} x_{1}, \ldots, \alpha_{k} x_{k}\right)\right\|_{k} \leq\left(\max _{i \in \mathbb{N}_{k}}\left|\alpha_{i}\right|\right)\left\|\left(x_{1} \ldots x_{k}\right)\right\|_{k}$ for $\alpha_{1} \ldots \alpha_{k} \in \mathbb{C}, x_{1}, \ldots, x_{k} \in \wp$;
(3) $\left\|\left(x_{1}, \ldots, x_{k-1}, 0\right)\right\|_{k}=\left\|\left(x_{1}, \ldots, x_{k-1}\right)\right\|_{k-1}$, for $x_{1}, \ldots, x_{k-1} \in \wp$;
(4) $\left\|\left(x_{1}, \ldots, x_{k-1}, x_{k-1}\right)\right\|_{k}=\left\|\left(x_{1}, \ldots, x_{k-1}\right)\right\|_{k-1}$ for $x_{1}, \ldots, x_{k-1} \in \wp$.

In this case, we say that $\left(\left(\wp^{k},\|\cdot\|_{k}\right): k \in \mathbb{N}\right)$ is a multi - normed space.
Suppose that $\left(\left(\wp^{k},\|\cdot\|_{k}\right): k \in \mathbb{N}\right)$ is a multi - normed spaces, and take $k \in \mathbb{N}$. We need the following two properties of multi - norms. They can be found in [4].
(a) $\|(x, \ldots x)\|_{k}=\|x\|$, for $x \in \wp$,
(b) $\max _{i \in \mathbb{N}_{k}}\left\|x_{i}\right\| \leq\left\|\left(x_{1}, \ldots, x_{k}\right)\right\|_{k} \leq \sum_{i=1}^{k}\left\|x_{i}\right\| \leq k \max _{i \in \mathbb{N}_{k}}\left\|x_{i}\right\|$, for $x_{1}, \ldots, x_{k} \in \wp$.

It follows from (b) that if $(\wp,\|\cdot\|)$ is a Banach space, then $\left(\wp^{k},\|\cdot\|_{k}\right)$ is a Banach space for each $k \in \mathbb{N}$; In this case, $\left(\left(\wp^{k},\|\cdot\|_{k}\right): k \in \mathbb{N}\right)$ is a multi - Banach space.

Lemma 1.3. [4] Suppose that $k \in \mathbb{N}$ and $\left(x_{1} \ldots x_{k}\right) \in \wp^{k}$. For each $j \in\{1 \ldots k\}$, let $\left(x_{n}^{j}\right)_{n=1,2 \ldots}$ be a sequence in \wp such that $\lim _{n \rightarrow \infty} x_{n}^{j}=x_{j}$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(x_{n}^{1}-y_{1}, \ldots, x_{n}^{k}-y_{k}\right)=\left(x_{1}-y_{1} \ldots x_{k}-y_{k}\right) \tag{2}
\end{equation*}
$$

holds for all $\left(y_{1}, \ldots, y_{k}\right) \in \wp^{k}$.
Definition 1.4. [4] Let $\left(\left(\wp^{k},\|\cdot\|_{k}\right): k \in \mathbb{N}\right)$ be a multi - normed space. A sequence $\left(x_{n}\right)$ in \wp is a multi-null sequence if for each $\eta>0$, there exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sup _{k \in \mathbb{N}}\left\|\left(x_{n}, \ldots, x_{n+k-1}\right)\right\|_{k} \leq \eta \quad\left(n \geq n_{0}\right) \tag{3}
\end{equation*}
$$

Let $x \in \wp$, we say that the sequence $\left(x_{n}\right)$ is multi-convergent to x in \wp and write $\lim _{n \rightarrow \infty} x_{n}=x$ if $\left(x_{n}-x\right)$ is a multi - null sequence.

There are several orthogonality notations on a real normed spaces available. But here, we present the orthogonal concept introduced by Ratz [13].
This is given in the following definition.
Definition 1.5. Suppose that X is a vector space (algebraic module) with $\operatorname{dim} X \geq 2$, and \perp is a binary relation on X with the following properties:
(1) Totality of \perp for zero: $x \perp 0,0 \perp x$ for all $x \in X$;
(2) Independence: If $x, y \in X-\{0\}$ and $x \perp y$, then x and y are linearly independent;
(3) Homogeneity: If $x, y \in X$ and $x \perp y$, then $\alpha x \perp \beta y$ for all $\alpha, \beta \in \mathbb{R}$;
(4) Thalesian properity: If P is a 2 -dimensional subspace of $X, x \in P$ and $\lambda \in \mathbb{R}_{+}$which is the set of non-negative real numbers, then there exists $y_{0} \in P$ such that $x \perp y_{0}$ and $x+y_{0} \perp \lambda x-y_{0}$.

The pair (X, \perp) is called an orthogonality space (resp., module). By an orthogonality normed space (normed module) we mean an orthogonality space (resp., module) having a normed (resp., normed module) structure.

Definition 1.6. Let X be a set. A function $d: X \times X \rightarrow[0, \infty]$ is called a generalized metric on X if and only if d satisfies

- $d(x, y)=0$ if and only if $x=y$;
- $d(x, y)=d(y, x)$ for all $x, y \in X$;
- $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in X$.

Theorem 1.7. Let S be an orthogonality space and let $\left(\left(T^{k},\|\cdot\|\right): K \in \mathbb{N}\right)$ be a multi-Banach space. Suppose that η is a nonnegative real number and $\zeta: S \rightarrow T$ is a mapping satisfying

$$
\begin{equation*}
\sup _{k \in \mathbb{N}}\left\|\left(D \zeta\left(i_{1}, j_{1}\right), \ldots, D \zeta\left(i_{k}, j_{k}\right)\right)\right\|_{k} \leq \eta \tag{4}
\end{equation*}
$$

$i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{k} \in S$ and $i_{x} \perp j_{x}(x=1,2 \ldots k)$ and $f(0)=0$. Then there exists a unique Orthogonally Additive mapping $\mathcal{A}: S \rightarrow T$ such that

$$
\begin{equation*}
\sup _{k \in \mathbb{N}}\left\|\left(\zeta\left(i_{1}\right)-\mathcal{A}\left(i_{1}\right), \ldots, \zeta\left(i_{k}\right)-\mathcal{A}\left(i_{k}\right)\right)\right\|_{k} \leq \eta \tag{5}
\end{equation*}
$$

$i_{1}, i_{2}, \ldots, i_{k} \in S$.

Proof. Let $\Lambda=\{g: S \rightarrow T \mid g(0)=0\}$ and introduce the generalized metric d defined on Λ by
$d(u, v)=\inf \left\{\lambda \in[0, \infty] \mid \sup _{k \in \mathbb{N}}\left\|\left(u\left(j_{1}\right)-v\left(j_{1}\right), \ldots, u\left(j_{k}\right)-v\left(j_{k}\right)\right)\right\|_{k} \leq \lambda \quad \forall \quad j_{1}, \ldots, j_{k} \in S\right\}$
Then it is easy to show that (Λ, d) is a generalized complete metric space [11].
We define an operator $\mathcal{J}: \Lambda \rightarrow \Lambda$ by

$$
\mathcal{J} u(j)=\frac{1}{2} u(2 j) \quad j \in S
$$

We assert that \mathcal{J} is a strictly contractive operator. Given $u, v \in \Lambda$, let $\lambda \in[0, \infty]$ be an arbitary constant with $d(u, v) \leq \lambda$. By the definition

$$
\sup _{k \in \mathbb{N}}\left\|\left(u\left(j_{1}\right)-v\left(j_{1}\right), \ldots, u\left(j_{k}\right)-v\left(j_{k}\right)\right)\right\|_{k} \leq \lambda \quad j_{1}, \ldots, j_{k} \in S
$$

Therefore,

$$
\begin{aligned}
& \sup _{k \in \mathbb{N}}\left\|\left(\mathcal{J} u\left(j_{1}\right)-\mathcal{J} v\left(j_{1}\right), \ldots, \mathcal{J} u\left(j_{k}\right)-\mathcal{J} v\left(j_{k}\right)\right)\right\|_{k} \\
& \quad \leq \sup _{k \in \mathbb{N}}\left\|\left(\frac{1}{2} u\left(2 j_{1}\right)-\frac{1}{2} v\left(2 j_{1}\right), \ldots, \frac{1}{2} u\left(2 j_{k}\right)-\frac{1}{2} v\left(2 j_{k}\right)\right)\right\|_{k} \\
& \quad \leq \frac{1}{2} \lambda
\end{aligned}
$$

$j_{1}, \ldots, j_{k} \in S$. Hence, it holds that

$$
d(\mathcal{J} u, \mathcal{J} v) \leq \frac{1}{2} \lambda d(\mathcal{J} u, \mathcal{J} v) \leq \frac{1}{2} d(u, v)
$$

$\forall u, v \in \Lambda$.
Letting $j_{1}=j_{2}=, \ldots,=j_{k}=0$ in (4), we obtain that

$$
\begin{equation*}
\sup _{k \in \mathbb{N}}\left\|\left(\zeta\left(2 j_{1}\right)-2 \zeta\left(j_{1}\right), \ldots, \zeta\left(2 j_{k}\right)-2 \zeta\left(2 j_{k}\right)\right)\right\|_{k} \leq \eta \tag{6}
\end{equation*}
$$

for all $i_{x} \in S, i_{x} \perp 0 \quad(x=1,2, \ldots, k)$.
Dividing on both sides 2 by (6), we can get

$$
\begin{equation*}
\sup _{k \in \mathbb{N}}\left\|\left(\zeta\left(j_{1}\right)-\frac{1}{2} \zeta\left(2 j_{1}\right), \ldots, \zeta\left(j_{k}\right)-\frac{1}{2} \zeta\left(2 j_{k}\right)\right)\right\|_{k} \leq \frac{1}{2} \eta \tag{7}
\end{equation*}
$$

This Means that \mathcal{J} is strictly contractive operator on Λ with the Lipschitz constant $\mathcal{L}=\frac{1}{2}$.
By 7. , we have $d(\mathcal{J} \zeta, \zeta) \leq \frac{1}{2} \eta<\infty$. According to Theorem 1.1. we deduce the existence of a fixed point of \mathcal{J} that is the existence of mapping $\mathcal{A}: S \rightarrow T$ such that

$$
\mathcal{A}(2 j)=2 \mathcal{A}(j) \quad \forall j \in S
$$

Moreover, we have $d\left(\mathcal{J}^{n} \zeta, \mathcal{A}\right) \rightarrow 0$, which implies

$$
\mathcal{A}(q)=\lim _{n \rightarrow \infty} \mathcal{J}^{n} \zeta(j)=\lim _{n \rightarrow \infty} \frac{\zeta\left(2^{n} j\right)}{2^{n}}
$$

for all $q \in S$.
Also, $d(\zeta, \mathcal{A}) \leq \frac{1}{1-\mathcal{L}} d(\mathcal{J} \zeta, \zeta)$ implies the inequality

$$
\begin{aligned}
d(\zeta, \mathcal{A}) & \leq \frac{1}{1-\frac{1}{2}} d(\mathcal{J} \zeta, \zeta) \\
& \leq \eta
\end{aligned}
$$

Considering Definition 1.5, we have $2^{n} i \perp 2^{n} j$. Set

$$
i_{1}=, \ldots,=i_{k}=2^{n} i, j_{1}=, \ldots,=j_{k}=2^{n} j
$$

in (4) and divide both sides by 2^{n}. Then, using property (a) of multi-norms, we obtain

$$
\begin{aligned}
\|D \mathcal{A}(i, j)\| & =\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|D \zeta\left(2^{n} i, 2^{n} j\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{\eta}{2^{n}}=0
\end{aligned}
$$

for all $i, j \in S$. Hence \mathcal{A} is Additive.
The uniqueness of \mathcal{A} follows from the fact that \mathcal{A} is the unique fixed point of \mathcal{J} with the property that there exists $\ell \in(0, \infty)$ such that

$$
\sup _{k \in \mathbb{N}}\left\|\left(\zeta\left(i_{1}\right)-\mathcal{A}\left(i_{1}\right), \ldots, \zeta\left(i_{k}\right)-\mathcal{A}\left(i_{k}\right)\right)\right\|_{k} \leq \ell
$$

for all $i_{1}, \ldots, i_{k} \in S$.
This completes the proof of the Theorem.

Theorem 1.8. Let S be an orthogonality space and let $\left(\left(T^{k},\|\|.\right): K \in \mathbb{N}\right)$ be a multi-Banach space. Suppose that η is a nonnegative real number and $\zeta: S \rightarrow T$ is a mapping satisfying the inequality (4). Then there exists a unique Orthogonally Quadratic mapping $\mathcal{Q}: S \rightarrow T$ such that

$$
\begin{equation*}
\sup _{k \in \mathbb{N}}\left\|\left(\zeta\left(i_{1}\right)-\mathcal{Q}\left(i_{1}\right), \ldots, \zeta\left(i_{k}\right)-\mathcal{Q}\left(i_{k}\right)\right)\right\|_{k} \leq \frac{1}{3} \eta \tag{8}
\end{equation*}
$$

$i_{1}, i_{2}, \ldots, i_{k} \in S$.

Proof. By (6), we obtain

$$
\begin{equation*}
\left\|\left(\zeta\left(2 i_{1}\right)-4 \zeta\left(i_{1}\right), \ldots, \zeta\left(2 i_{k}\right)-4 \zeta\left(i_{k}\right)\right)\right\|_{k} \leq \eta \tag{9}
\end{equation*}
$$

Dividing on both side 4 by (9), we can get

$$
\begin{equation*}
\left\|\left(\zeta\left(i_{1}\right)-\frac{1}{4} \zeta\left(2 i_{1}\right), \ldots ., \zeta\left(i_{k}\right)-\frac{1}{4} \zeta\left(2 i_{k}\right)\right)\right\|_{k} \leq \frac{1}{4} \eta \tag{10}
\end{equation*}
$$

By 10 , we have we have $d(\mathcal{J} \zeta, \zeta) \leq \frac{1}{4} \eta<\infty$.
Also, $d(\zeta, \mathcal{Q}) \leq \frac{1}{1-\mathcal{L}} d(\mathcal{J} \zeta, \zeta)$ implies the inequality

$$
\begin{aligned}
d(\zeta, \mathcal{Q}) & \leq \frac{1}{1-\frac{1}{4}} d(\mathcal{J} \zeta, \zeta) \\
& \leq \frac{1}{3} \eta
\end{aligned}
$$

The rest of the proof is similar to that of Theorem 1.7 .
Theorem 1.9. Let S be an an orthogonality space and let $\left(\left(T^{k},\|\cdot\|\right): K \in \mathbb{N}\right)$ be a multi-Banach space. Suppose that $\eta \geq 0$ and $\zeta: S \rightarrow T$ is an mapping satisfying

$$
\begin{equation*}
\sup _{k \in \mathbb{N}}\left\|\left(D \zeta\left(i_{1}, j_{1}\right), \ldots, D \zeta\left(i_{k}, j_{k}\right)\right)\right\|_{k} \leq \eta \tag{11}
\end{equation*}
$$

$\forall i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{k} \in S$. Then there exist a unique orthogonally additive mapping $\mathcal{A}: S \rightarrow T$ and a unique orthogonally quadratic mapping $\mathcal{Q}: S \rightarrow T$ such that

$$
\begin{equation*}
\sup _{k \in \mathbb{N}}\left\|\left(\zeta\left(i_{1}\right)-\mathcal{A}\left(i_{1}\right)-\mathcal{Q}\left(i_{1}\right), \ldots, \zeta\left(i_{k}\right)-\mathcal{A}\left(i_{k}\right)-\mathcal{Q}\left(i_{k}\right)\right)\right\|_{k} \leq \frac{4}{3} \eta \tag{12}
\end{equation*}
$$

$\forall i_{1}, i_{2}, \ldots, i_{k} \in S$.
Proof. By Theorem 1.7, 1.8 there exist a unique additive mapping $\mathcal{A}_{0}: S \rightarrow T$ and a unique quadratic mapping $\mathcal{Q}_{0}: S \rightarrow T$ such that

$$
\begin{equation*}
\sup _{k \in \mathbb{N}}\left\|\left(\zeta\left(i_{1}\right)-\mathcal{A}_{0}\left(i_{1}\right), \ldots, \zeta\left(i_{k}\right)-\mathcal{A}_{0}\left(i_{k}\right)\right)\right\|_{k} \leq \eta \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{k \in \mathbb{N}}\left\|\left(\zeta\left(i_{1}\right)-\mathcal{Q}_{0}\left(i_{1}\right), \ldots, \zeta\left(i_{k}\right)-\mathcal{Q}_{0}\left(i_{k}\right)\right)\right\|_{k} \leq \frac{1}{3} \eta \tag{14}
\end{equation*}
$$

for all $i_{1}, \ldots, i_{k} \in S$. Now from (13) and (14), we get

$$
\begin{equation*}
\sup _{k \in \mathbb{N}}\left\|\left(\zeta\left(i_{1}\right)+\mathcal{A}_{0}\left(i_{1}\right)-\mathcal{Q}_{0}\left(i_{1}\right), \ldots, \zeta\left(i_{k}\right)+\mathcal{A}_{0}\left(i_{k}\right)-\mathcal{Q}_{0}\left(i_{k}\right)\right)\right\|_{k} \leq \frac{4}{3} \eta \tag{15}
\end{equation*}
$$

for all $i_{1}, \ldots, i_{k} \in S$. Thus we obtain (12) by defining $\mathcal{A}(i)=-\mathcal{A}_{0}(i)$ and

$$
\mathcal{Q}(i)=\mathcal{Q}_{0}(i) \text {. The uniqueness of } \mathcal{A} \text { and } \mathcal{Q} \text { is easy to show. }
$$

References

[1] Aoki.T, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn. 2 (1950), 64-66.
[2] Czerwik.S, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Co., Singapore, New Jersey, London, (2002).
[3] Diaz.J.B and Margolis.B, A fixed point theorem of the alternative, for contraction on a generalized complete metric space, Bulletin of the American Mathematical Society, vol. 74 (1968), 305-309.
[4] Dales, H.G and Moslehian, Stability of mappings on multi-normed spaces, Glasgow Mathematical Journal, 49 (2007), 321-332.
[5] Fridoun Moradlou, Approximate Euler-Lagrange-Jensen type Additive mapping in Multi-Banach Spaces: A Fixed point Approach, Commun. Korean Math. Soc. 28 (2013), 319-333.
[6] Hyers.D.H, On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
[7] Hyers.D.H, Isac.G, Rassias.T.M, Stability of Functional Equations in Several Variables. Birkhäuser, Basel, (1998).
[8] Jun.K, Kim.H, The Generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867-878.
[9] Liguang Wang, Bo Liu and Ran Bai, Stability of a Mixed Type Functional Equation on Multi-Banach Spaces: A Fixed Point Approach, Fixed Point Theory and Applications (2010), 9 pages.
[10] Lee.S, Im.S, Hwang.I, Quartic functional equations, J. Math. Anal. Appl., 307 (2005), 387-394.
[11] Mihet.D and Radu.V, On the stability of the additive Cauchy functional equation in random normed spaces, Journal of mathematical Analysis and Applications, 343 (2008), 567-572.
[12] Murali.R, Deboral.M, Antony Raj.A, A fixed point approach to orthogonal stability of an additive-cubic functional equation, Int. J. Adv. Appl. Math. and Mech. 3(4) (2016), 1-8.
[13] Ratz.J, On Orthogonally Additive Mappings, Aequationes Mathematicae, 28 (1985), 35-49.
[14] Radu.V, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91-96.
[15] Rassias.T.M, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc. 72 (1978), 297-300.
[16] Sattar Alizadeh, Fridoun moradlou, Approximate a quadratic mapping in Multi-Banach Spaces, A Fixed Point Approach, Int. J. Nonlinear Anal. Appl. 7 (2016), 63-75.
[17] Tian Zhou Xu, John Michael Rassias and Wan Xin Xu, Generalized Ulam - Hyers Stability of a General Mixed AQCQ functional equation in Multi-Banach Spaces: A Fixed point Approach, European Journal of Pure and Applied Mathematics 3 (2010), 1032-1047.
[18] Ulam.S.M, A Collection of the Mathematical Problems, Interscience, New York, (1960).
[19] Xiuzhong Wang, Lidan Chang, Guofen Liu, Orthogonal Stability of Mixed Additive-Quadratic Jenson Type Functional Equation in Multi-Banach Spaces, Advances in Pure Mathematics 5 (2015), 325-332.
[20] Young Ju Jeon and Chang Il Kim, A Fixed Point Approach to the orthogonal stability of mixed type functional equations, East Asian Math.J 31 (2015), 627-634.
[21] Zhihua Wang, Xiaopei Li and Themistocles M. Rassias, Stability of an Additive-Cubic-Quartic Functional Equation in Multi-Banach Spaces, Abstract and Applied Analysis (2011), 11 pages.

[^0]: ${ }^{1}$ Corresponding Author: E-mail: shcrmurali@yahoo.co.in
 ${ }^{1,2}$ Department of Mathematics, Sacred Heart College, Tirupattur, TamilNadu, India - 635601

