

LERED HEATT RESEARCH PUBLICATIONS

Journal of Computational Mathematica

Journal homepage: www.shcpub.edu.in

Stability of Orthogonally Additive-Quadratic Functional Equation in Multi-Banach Spaces

¹R. Murali and ²A. Antony Raj

Received on 17 Feb 2017, Accepted on 08 April 2017

ABSTRACT. In this paper, we establish the Hyers-Ulam stability of the following Orthogonally Additive-Quadratic functional equation in Multi-Banach Spaces.

 $\zeta(2i+j) - \zeta(i+2j) - \zeta(i+j) - \zeta(j-i) - \zeta(i) + \zeta(j) + \zeta(2j) = 0$

with $i \perp j$ where, \perp is orthogonality in the sense of Ratz.

1. INTRODUCTION

The stability problem of functional equations has a long history. Stability is investigated when one concerns whether a small error of parameters causes a large deviation of the solution. Generally speaking, given a function which satisfies a functional equation approximately called a approximate solution, we ask: Is there a solution of this equation which is close to the approximate solution in some accuracy? An earlier work was done by Hyers [6] in order to answer Ulam's equation [18] on approximately additive mappings.

During last decades various stability problems for large variety of functional equations have been investigated by several mathematicians. A large list of references concerning in the stability of functional equations can be found.

e.g. ([1], [2], [6], [7], [8], [10]).

In 2010, Liguang Wang, Bo Liu and ran Bai [9] proved the stability of a mixed type functional equations on Multi - Banach Spaces. In 2010, Tian Zhou Xu, John Michael Rassias, Wan Xin Xu [17] investigated the generalized Ulam-Hyers stability of the general mixed additive-quadratic-cubic-quartic functional equation

$$f(x+ny) + f(x-ny) = n^2 f(x+y) + n^2 f(x-y) + 2(1-n^2)f(x) + \frac{n^4 - n^2}{12} \left[f(2y) + f(-2y) - 4f(y) - 4f(-y) \right]$$

¹Corresponding Author: E-mail: shcrmurali@yahoo.co.in

^{1,2}Department of Mathematics, Sacred Heart College, Tirupattur, TamilNadu, India - 635 601

for fixed integers n with $n \neq 0, \pm 1$ in Multi- Banach Spaces.

In 2011, Zhihua Wang, Xiaopei Li and Th. M. Rassias[21] proved the Hyers -Ulam stability of the additive - cubic - quartic functional equations

$$11 [f(x+2y) + f(x-2y)] = 44 [f(x+y) + f(x-y)] + 12f(3y) - 48f(2y) + 60f(y) - 66f(x)$$

in Multi - Banach Spaces by using fixed point method.

In 2013, Fridoun Moradlou [5] proved the generalized Hyers-Ulam-Rassias stability of the Euler-Lagrange-Jensen Type Additive mapping in Multi-Banach Spaces. In 2015, Xiuzhong Yang, Lidan Chang, Guofen Liu[19] estabilished the orthogonal stability of mixed additive-quadratic jensen type functional equation in Multi-Banach Spaces.

In 2015, Young Ju Jeon and Chang Il Kim [20] investigated the following additive -quadratic functional equation

$$f(2x+y) - f(x+2y) - f(x+y) - f(y-x) - f(x) + f(y) + f(2y) = 0$$

in orthogonality space by using fixed point method.

In 2016, R. Murali, M. Deboral and A. Antony Raj [12] proved the Hyers-Ulam stability of the additive-cubic functional equation

$$f(2x+y) + f(2x-y) - f(4x) = 2f(x+y) + 2f(x-y) - 8f(2x) + 10f(x) - 2f(-x)$$

for all x, y with $x \perp y$. in orthogonal space.

In 2016, Sattar Alizadeh, Fridoun Moradlou [16] proved the generalized Hyers-Ulam-Rassias stability of the quadratic mapping in multi-Banach spaces.

In this paper, we achieve the stability of the orthogonally Additive-Quadratic functional equation

$$\zeta(2i+j) - \zeta(i+2j) - \zeta(i+j) - \zeta(j-i) - \zeta(i) + \zeta(j) + \zeta(2j) = 0$$
(1)

with $i \perp j$ in Multi-Banach Spaces.

It is easy to see that the function $\zeta(i) = ai^2 + bi$ is a solution of (1).

Theorem 1.1. [3], [14] Let (\mathcal{X}, d) be a complete generalized metric space and let $\mathcal{J} : \mathcal{X} \to \mathcal{X}$ be a strictly contractive mapping with Lipschitz constant $\mathcal{L} < 1$. Then for each given element $x \in \mathcal{X}$, either

$$d(\mathcal{J}^n x, \mathcal{J}^{n+1} x) = \infty$$

for all nonnegative integers n or there exists a positive integer n_0 such that

- (i) $d(\mathcal{J}^n x, \mathcal{J}^{n+1} x) < \infty \text{ for all } n \ge n_0;$
- (ii) The sequence $\{\mathcal{J}^n x\}$ is convergent to a fixed point y^* of \mathcal{J} ;
- (iii) y^* is the unique fixed point of T in the set $Y = \{y \in X : d(\mathcal{J}^{n_0}x, y) < \infty\};$
- (iv) $d(y, y^*) \leq \frac{1}{1-\mathcal{L}} d(y, \mathcal{J}y)$ for all $y \in Y$..

Now, let us recall some concepts concerning Multi-Banach spaces.

Let $(\wp, \|.\|)$ be a complex normed space, and let $k \in \mathbb{N}$. We denote by \wp^k the linear space $\wp \oplus \wp \oplus \wp \oplus \ldots \oplus \wp$ consisting of k- tuples $(x_1, ..., x_k)$ where $x_1, ..., x_k \in \wp$. The linear operations on \wp^k are defined coordinate wise. The zero element of either \wp or \wp^k is denoted by 0. We denote by \mathbb{N}_k the set $\{1, 2, ..., k\}$ and by Ψ_k the group of permutations on k symbols.

Definition 1.2. [4] A Multi- norm on $\{\wp^k : k \in \mathbb{N}\}$ is a sequence $(\|.\|) = (\|.\|_k : k \in \mathbb{N})$ such that $\|.\|_k$ is a norm on \wp^k for each $k \in \mathbb{N}, \|x\|_1 = \|x\|$ for each $x \in \wp$, and the following axioms are satisfied for each $k \in \mathbb{N}$ with $k \ge 2$:

- (1) $\|(x_{\sigma(1)}, ..., x_{\sigma(k)})\|_{k} = \|(x_{1}...x_{k})\|_{k}$, for $\sigma \in \Psi_{k}, x_{1}, ..., x_{k} \in \wp$;
- (2) $\|(\alpha_1 x_1, ..., \alpha_k x_k)\|_k \le (\max_{i \in \mathbb{N}_k} |\alpha_i|) \|(x_1 ... x_k)\|_k$ for $\alpha_1 ... \alpha_k \in \mathbb{C}, x_1, ..., x_k \in \wp$;
- (3) $||(x_1, ..., x_{k-1}, 0)||_k = ||(x_1, ..., x_{k-1})||_{k-1}$, for $x_1, ..., x_{k-1} \in \wp$;
- (4) $||(x_1,...,x_{k-1},x_{k-1})||_k = ||(x_1,...,x_{k-1})||_{k-1}$ for $x_1,...,x_{k-1} \in \wp$.

In this case, we say that $((\wp^k, \|.\|_k) : k \in \mathbb{N})$ is a multi - normed space.

Suppose that $((\wp^k, \|.\|_k) : k \in \mathbb{N})$ is a multi - normed spaces, and take $k \in \mathbb{N}$. We need the following two properties of multi - norms. They can be found in [4].

- (a) $||(x,...x)||_k = ||x||$, for $x \in \wp$,
- (b) $\max_{i \in \mathbb{N}_k} \|x_i\| \le \|(x_1, ..., x_k)\|_k \le \sum_{i=1}^k \|x_i\| \le k \max_{i \in \mathbb{N}_k} \|x_i\|$, for $x_1, ..., x_k \in \wp$.

It follows from (b) that if $(\wp, \|.\|)$ is a Banach space, then $(\wp^k, \|.\|_k)$ is a Banach space for each $k \in \mathbb{N}$; In this case, $((\wp^k, \|.\|_k) : k \in \mathbb{N})$ is a multi - Banach space.

Lemma 1.3. [4] Suppose that $k \in \mathbb{N}$ and $(x_1...x_k) \in \wp^k$. For each $j \in \{1...k\}$, let $(x_n^j)_{n=1,2...}$ be a sequence in \wp such that $\lim_{n\to\infty} x_n^j = x_j$. Then

$$\lim_{n \to \infty} \left(x_n^1 - y_1, \dots, x_n^k - y_k \right) = \left(x_1 - y_1 \dots x_k - y_k \right)$$
(2)

holds for all $(y_1, ..., y_k) \in \wp^k$.

Definition 1.4. [4] Let $((\wp^k, \|.\|_k) : k \in \mathbb{N})$ be a multi - normed space. A sequence (x_n) in \wp is a multi-null sequence if for each $\eta > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\sup_{k \in \mathbb{N}} \|(x_n, ..., x_{n+k-1})\|_k \le \eta \qquad (n \ge n_0).$$
(3)

Let $x \in \wp$, we say that the sequence (x_n) is multi-convergent to x in \wp and write $\lim_{n\to\infty} x_n = x$ if $(x_n - x)$ is a multi - null sequence.

There are several orthogonality notations on a real normed spaces available. But here, we present the orthogonal concept introduced by Ratz [13]. This is given in the following definition.

Definition 1.5. Suppose that X is a vector space (algebraic module) with $\dim X \ge 2$, and \perp is a binary relation on X with the following properties:

- (1) Totality of \perp for zero: $x \perp 0, 0 \perp x$ for all $x \in X$;
- (2) Independence: If $x, y \in X \{0\}$ and $x \perp y$, then x and y are linearly independent;
- (3) Homogeneity: If $x, y \in X$ and $x \perp y$, then $\alpha x \perp \beta y$ for all $\alpha, \beta \in \mathbb{R}$;
- (4) Thalesian properity: If P is a 2-dimensional subspace of $X, x \in P$ and $\lambda \in \mathbb{R}_+$ which is the set of non-negative real numbers, then there exists $y_0 \in P$ such that $x \perp y_0$ and $x + y_0 \perp \lambda x y_0$.

The pair (X, \perp) is called an orthogonality space (resp., module). By an orthogonality normed space (normed module) we mean an orthogonality space (resp., module) having a normed (resp., normed module) structure. **Definition 1.6.** Let X be a set. A function $d : X \times X \to [0, \infty]$ is called a generalized metric on X if and only if d satisfies

- d(x, y) = 0 if and only if x = y;
- d(x,y) = d(y,x) for all $x, y \in X$;
- $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

Theorem 1.7. Let S be an orthogonality space and let $((T^k, \|.\|) : K \in \mathbb{N})$ be a multi-Banach space. Suppose that η is a nonnegative real number and $\zeta : S \to T$ is a mapping satisfying

$$\sup_{k \in \mathbb{N}} \| (D\zeta(i_1, j_1), ..., D\zeta(i_k, j_k)) \|_k \le \eta$$
(4)

 $i_1, ..., i_k, j_1, ..., j_k \in S$ and $i_x \perp j_x$ (x = 1, 2...k) and f(0) = 0. Then there exists a unique Orthogonally Additive mapping $\mathcal{A} : S \to T$ such that

$$\sup_{k \in \mathbb{N}} \left\| \left(\zeta(i_1) - \mathcal{A}(i_1), \dots, \zeta(i_k) - \mathcal{A}(i_k) \right) \right\|_k \le \eta$$
(5)

 $i_1, i_2, ..., i_k \in S.$

Proof. Let $\Lambda = \{g : S \to T | g(0) = 0\}$ and introduce the generalized metric d defined on Λ by

$$d(u,v) = \inf \left\{ \lambda \in [0,\infty] |\sup_{k \in \mathbb{N}} \| (u(j_1) - v(j_1), ..., u(j_k) - v(j_k)) \|_k \le \lambda \quad \forall \quad j_1, ..., j_k \in S \right\}$$

Then it is easy to show that (Λ, d) is a generalized complete metric space [11]. We define an operator $\mathcal{J} : \Lambda \to \Lambda$ by

$$\mathcal{J}u(j) = \frac{1}{2}u(2j) \qquad j \in S$$

We assert that \mathcal{J} is a strictly contractive operator. Given $u, v \in \Lambda$, let $\lambda \in [0, \infty]$ be an arbitrary constant with $d(u, v) \leq \lambda$. By the definition

$$\sup_{k \in \mathbb{N}} \| (u(j_1) - v(j_1), ..., u(j_k) - v(j_k)) \|_k \le \lambda \quad j_1, ..., j_k \in S.$$

Therefore,

$$\begin{split} \sup_{k \in \mathbb{N}} \left\| (\mathcal{J}u(j_1) - \mathcal{J}v(j_1), ..., \mathcal{J}u(j_k) - \mathcal{J}v(j_k)) \right\|_k \\ &\leq \sup_{k \in \mathbb{N}} \left\| \left(\frac{1}{2}u(2j_1) - \frac{1}{2}v(2j_1), ..., \frac{1}{2}u(2j_k) - \frac{1}{2}v(2j_k) \right) \right\|_k \\ &\leq \frac{1}{2}\lambda \end{split}$$

 $j_1, ..., j_k \in S$. Hence, it holds that

$$d(\mathcal{J}u, \mathcal{J}v) \leq \frac{1}{2}\lambda d(\mathcal{J}u, \mathcal{J}v) \leq \frac{1}{2}d(u, v)$$

 $\forall u, v \in \Lambda.$

Letting $j_1 = j_2 =, ..., = j_k = 0$ in (4), we obtain that

$$\sup_{k \in \mathbb{N}} \| (\zeta(2j_1) - 2\zeta(j_1), \dots, \zeta(2j_k) - 2\zeta(2j_k)) \|_k \le \eta$$
(6)

for all $i_x \in S, i_x \perp 0$ (x = 1, 2, ..., k).

Dividing on both sides 2 by (6), we can get

$$\sup_{k \in \mathbb{N}} \left\| \left(\zeta(j_1) - \frac{1}{2} \zeta(2j_1), \dots, \zeta(j_k) - \frac{1}{2} \zeta(2j_k) \right) \right\|_k \le \frac{1}{2} \eta \tag{7}$$

This Means that \mathcal{J} is strictly contractive operator on Λ with the Lipschitz constant $\mathcal{L} = \frac{1}{2}$.

By (7), we have $d(\mathcal{J}\zeta,\zeta) \leq \frac{1}{2}\eta < \infty$. According to Theorem 1.1, we deduce the existence of a fixed point of \mathcal{J} that is the existence of mapping $\mathcal{A}: S \to T$ such that

$$\mathcal{A}(2j) = 2\mathcal{A}(j) \qquad \forall j \in S.$$

Moreover, we have $d(\mathcal{J}^n\zeta, \mathcal{A}) \to 0$, which implies

$$\mathcal{A}(q) = \lim_{n \to \infty} \mathcal{J}^n \zeta(j) = \lim_{n \to \infty} \frac{\zeta(2^n j)}{2^n}$$

for all $q \in S$. Also, $d(\zeta, \mathcal{A}) \leq \frac{1}{1 - \mathcal{L}} d(\mathcal{J}\zeta, \zeta)$ implies the inequality

$$d(\zeta, \mathcal{A}) \leq \frac{1}{1 - \frac{1}{2}} d(\mathcal{J}\zeta, \zeta)$$
$$< \eta.$$

Considering Definition 1.5, we have $2^n i \perp 2^n j$. Set

$$i_1 =, ..., = i_k = 2^n i, j_1 =, ..., = j_k = 2^n j$$

in (4) and divide both sides by 2^n . Then, using property (a) of multi-norms, we obtain

$$\|D\mathcal{A}(i,j)\| = \lim_{n \to \infty} \frac{1}{2^n} \|D\zeta (2^n i, 2^n j)\|$$
$$\leq \lim_{n \to \infty} \frac{\eta}{2^n} = 0$$

for all $i, j \in S$. Hence \mathcal{A} is Additive.

The uniqueness of \mathcal{A} follows from the fact that \mathcal{A} is the unique fixed point of \mathcal{J} with the property that there exists $\ell \in (0, \infty)$ such that

$$\sup_{k \in \mathbb{N}} \left\| \left(\zeta(i_1) - \mathcal{A}(i_1), ..., \zeta(i_k) - \mathcal{A}(i_k) \right) \right\|_k \le \ell$$

for all $i_1, ..., i_k \in S$.

This completes the proof of the Theorem.

Theorem 1.8. Let S be an orthogonality space and let $((T^k, \|.\|) : K \in \mathbb{N})$ be a multi-Banach space. Suppose that η is a nonnegative real number and $\zeta : S \to T$ is a mapping satisfying the inequality (4). Then there exists a unique Orthogonally Quadratic mapping $\mathcal{Q} : S \to T$ such that

$$\sup_{k\in\mathbb{N}} \left\| \left(\zeta(i_1) - \mathcal{Q}(i_1), \dots, \zeta(i_k) - \mathcal{Q}(i_k)\right) \right\|_k \le \frac{1}{3}\eta \tag{8}$$

 $i_1, i_2, ..., i_k \in S.$

Proof. By (6), we obtain

$$\|(\zeta(2i_1) - 4\zeta(i_1), \dots, \zeta(2i_k) - 4\zeta(i_k))\|_k \le \eta$$
(9)

Dividing on both side 4 by (9), we can get

$$\left\| \left(\zeta(i_1) - \frac{1}{4} \zeta(2i_1), \dots, \zeta(i_k) - \frac{1}{4} \zeta(2i_k) \right) \right\|_k \le \frac{1}{4} \eta \tag{10}$$

By (10), we have we have $d(\mathcal{J}\zeta,\zeta) \leq \frac{1}{4}\eta < \infty$. Also, $d(\zeta, \mathcal{Q}) \leq \frac{1}{1-\mathcal{L}}d(\mathcal{J}\zeta,\zeta)$ implies the inequality

$$d(\zeta, \mathcal{Q}) \leq \frac{1}{1 - \frac{1}{4}} d(\mathcal{J}\zeta, \zeta)$$
$$\leq \frac{1}{3}\eta.$$

The rest of the proof is similar to that of Theorem 1.7.

Theorem 1.9. Let S be an an orthogonality space and let $((T^k, ||.||) : K \in \mathbb{N})$ be a multi-Banach space. Suppose that $\eta \ge 0$ and $\zeta : S \to T$ is an mapping satisfying

$$\sup_{k \in \mathbb{N}} \| (D\zeta(i_1, j_1), ..., D\zeta(i_k, j_k)) \|_k \le \eta$$
(11)

 $\forall i_1, ..., i_k, j_1, ..., j_k \in S$. Then there exist a unique orthogonally additive mapping $\mathcal{A}: S \to T$ and a unique orthogonally quadratic mapping $\mathcal{Q}: S \to T$ such that

$$\sup_{k \in \mathbb{N}} \left\| \left(\zeta(i_1) - \mathcal{A}(i_1) - \mathcal{Q}(i_1), \dots, \zeta(i_k) - \mathcal{A}(i_k) - \mathcal{Q}(i_k) \right) \right\|_k \le \frac{4}{3}\eta \tag{12}$$

 $\forall i_1, i_2, \dots, i_k \in S.$

Proof. By Theorem 1.7, 1.8 there exist a unique additive mapping $\mathcal{A}_0 : S \to T$ and a unique quadratic mapping $\mathcal{Q}_0 : S \to T$ such that

$$\sup_{k \in \mathbb{N}} \| (\zeta(i_1) - \mathcal{A}_0(i_1), ..., \zeta(i_k) - \mathcal{A}_0(i_k)) \|_k \le \eta$$
(13)

and

$$\sup_{k \in \mathbb{N}} \| (\zeta(i_1) - \mathcal{Q}_0(i_1), ..., \zeta(i_k) - \mathcal{Q}_0(i_k)) \|_k \le \frac{1}{3}\eta$$
(14)

for all $i_1, ..., i_k \in S$. Now from (13) and (14), we get

$$\sup_{k \in \mathbb{N}} \left\| (\zeta(i_1) + \mathcal{A}_0(i_1) - \mathcal{Q}_0(i_1), ..., \zeta(i_k) + \mathcal{A}_0(i_k) - \mathcal{Q}_0(i_k)) \right\|_k \le \frac{4}{3}\eta$$
(15)

for all $i_1, ..., i_k \in S$. Thus we obtain (12) by defining $\mathcal{A}(i) = -\mathcal{A}_0(i)$ and

 $\mathcal{Q}(i) = \mathcal{Q}_0(i)$. The uniqueness of \mathcal{A} and \mathcal{Q} is easy to show.

References

- Aoki.T, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn. 2 (1950), 64-66.
- [2] Czerwik.S, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Co., Singapore, New Jersey, London, (2002).
- [3] Diaz.J.B and Margolis.B, A fixed point theorem of the alternative, for contraction on a generalized complete metric space, Bulletin of the American Mathematical Society, vol. 74 (1968), 305-309.
- [4] Dales, H.G and Moslehian, Stability of mappings on multi-normed spaces, Glasgow Mathematical Journal, 49 (2007), 321-332.
- [5] Fridoun Moradlou, Approximate Euler-Lagrange-Jensen type Additive mapping in Multi-Banach Spaces: A Fixed point Approach, Commun. Korean Math. Soc. 28 (2013), 319-333.
- [6] Hyers.D.H, On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
- [7] Hyers.D.H, Isac.G, Rassias.T.M, Stability of Functional Equations in Several Variables. Birkhäuser, Basel, (1998).
- [8] Jun.K, Kim.H, The Generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867-878.
- [9] Liguang Wang, Bo Liu and Ran Bai, Stability of a Mixed Type Functional Equation on Multi-Banach Spaces: A Fixed Point Approach, Fixed Point Theory and Applications (2010), 9 pages.
- [10] Lee.S, Im.S, Hwang.I, Quartic functional equations, J. Math. Anal. Appl., 307 (2005), 387-394.
- [11] Mihet.D and Radu.V, On the stability of the additive Cauchy functional equation in random normed spaces, Journal of mathematical Analysis and Applications, 343 (2008), 567-572.
- [12] Murali.R, Deboral.M, Antony Raj.A, A fixed point approach to orthogonal stability of an additive-cubic functional equation, Int. J. Adv. Appl. Math. and Mech. 3(4) (2016), 1-8.
- [13] Ratz.J, On Orthogonally Additive Mappings, Aequationes Mathematicae, 28 (1985), 35-49.
- [14] Radu.V, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91-96.
- [15] Rassias.T.M, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc. 72 (1978), 297-300.

- [16] Sattar Alizadeh, Fridoun moradlou, Approximate a quadratic mapping in Multi-Banach Spaces, A Fixed Point Approach, Int. J. Nonlinear Anal. Appl. 7 (2016), 63-75.
- [17] Tian Zhou Xu, John Michael Rassias and Wan Xin Xu, Generalized Ulam Hyers Stability of a General Mixed AQCQ functional equation in Multi-Banach Spaces: A Fixed point Approach, European Journal of Pure and Applied Mathematics 3 (2010), 1032-1047.
- [18] Ulam.S.M, A Collection of the Mathematical Problems, Interscience, New York, (1960).
- [19] Xiuzhong Wang, Lidan Chang, Guofen Liu, Orthogonal Stability of Mixed Additive-Quadratic Jenson Type Functional Equation in Multi-Banach Spaces, Advances in Pure Mathematics 5 (2015), 325-332.
- [20] Young Ju Jeon and Chang Il Kim, A Fixed Point Approach to the orthogonal stability of mixed type functional equations, East Asian Math.J 31 (2015), 627-634.
- [21] Zhihua Wang, Xiaopei Li and Themistocles M. Rassias, Stability of an Additive-Cubic-Quartic Functional Equation in Multi-Banach Spaces, Abstract and Applied Analysis (2011), 11 pages.

www.shcpub.edu.in