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1. Introduction

Oscillation theory of differential equations originated by C. Sturm [18] in 1836, and

for partial differential equations by P. Hartman and A. Wintner [6] in 1955. Pioneer

work on oscillation of impulsive delay differential equations [5] was published in 1989

and its results were included in monograph [7]. Likewise in 1991, the first work done

in [4] on impulsive partial differential equations.

In [1] authors studied the asymptotic behavior of the nonoscillatory solutions of

the neutral equations with distributed deviating arguments. Oscillatory properties

of the nonlinear inhomogeneous hyperbolic equation with distributed deviating

arguments investigated in [8]. Oscillatory properties of solutions of many partial

differential equations with continuous distributed deviating arguments

concentrated in [2, 3, 11, 13, 17, 19, 22, 23, 24] and monographs [25, 27].

Motivated by [9, 10] to introducing distributed deviating arguments for impulsive

neutral parabolic partial differential equations. Particularly no work has been
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known with (E) and (B1) [(E) and (B2)] upto now. This paper generalizes many

results of hyperbolic partial differential equations without impulse and distributed

deviating arguments. Many authors studied the oscillation of partial differential

equations with or wihtout impulse, see [15, 16, 14, 12, 26, 20] and the references

cited therein. While comparing the importance between impulsive differential

equations and corresponding differential equations, impulsive type has wide

applications in various fields of science and technology.

In this paper, we focus our attention on oscillation of nonlinear impulsive neutral

partial differential equations with distributed deviating arguments and damping

term

∂

∂t

[
r(t)

∂

∂t
(u(x, t) + c(t)u(x, τ(t)))

]
+ p(t)

∂

∂t
(u(x, t) + c(t)u(x, τ(t)))

+
∫ b
a
q(x, t, ξ)f(u(x, g(t, ξ)))dη(ξ) = a(t)∆u(x, t)

−
∫ b
a
b(t, ξ)∆u(x, h(t, ξ))dη(ξ), t 6= tk, (x, t) ∈ Ω× R+ ≡ G

u(x, t+k ) = αk (x, tk, u(x, tk)) ,

ut(x, t
+
k ) = βk (x, tk, ut(x, tk)) , t = tk, k = 1, 2, · · · ,


(E)

where Ω is a bounded domain in RN with a piecewise smooth boundary ∂Ω and ∆

is the Laplacian in the Euclidean space RN .

Equation (E) is supplemented by one of the following Dirichlet and Robin

boundary conditions,

u = 0, (x, t) ∈ ∂Ω× R+ (B1)

∂u

∂γ
+ µ(x, t)u = 0, (x, t) ∈ ∂Ω× R+ (B2)

where γ is the unit exterior normal vector to ∂Ω and µ(x, t) ∈ C(∂Ω× R+, R+).

We assume that the following hypotheses (H) hold:

(H1) r(t) ∈ C ′(R+, (0,+∞)), r′(t) ≥ 0, p(t) ∈ C(R+,R),
∫∞
t0

1

R(s)
ds =∞, where

R(t) = exp

(∫ t
t0

r′(s) + p(s)

r(s)
ds

)
, c(t) ∈ C2(R+,R+), a(t) ∈ PC(R+,R+),

where PC denotes the class of functions which are piecewise continuous in
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t with discontinuities of first kind only at t = tk, k = 1, 2, · · · , and left

continuous at t = tk, k = 1, 2, · · · .
(H2) τ(t) ∈ C(R+,R), lim

t→+∞
τ(t) = +∞, q(x, t, ξ) ∈ C(Ω̄ × R+ × [a, b],R+),

Q(t, ξ) = min
x∈Ω̄

q(x, t, ξ), f(u) ∈ C(R,R) is convex in R+, uf(u) > 0 and

f(u)

u
≥ ε > 0 for u 6= 0.

(H3) b(t, ξ) ∈ C(R+ × [a, b],R+), g(t, ξ), h(t, ξ) ∈ C(R+ × [a, b],R), g(t, ξ),

h(t, ξ) ≤ t for ξ ∈ [a, b], g(t, ξ) and h(t, ξ) are nondecreasing with respect to

t and ξ respectively and lim inf
t→+∞, ξ∈[a,b]

g(t, ξ) = lim inf
t→+∞, ξ∈[a,b]

h(t, ξ) = +∞.

(H4) There exist a function θ(t) ∈ C(R+,R+) satisfying θ(t) ≤ g(t, a), θ′(t) > 0

and lim
t→+∞

θ(t) = +∞, η(ξ) ∈ ([a, b],R) is nondecreasing and the integral of

equation (E) is a Stieltjes one.

(H5) u(x, t) and their derivative ut(x, t) are piecewise continuous in t with

discontinuities of first kind only at t = tk, k = 1, 2, · · · , and left continuous

at t = tk, u(x, tk) = u(x, t−k ), ut(x, tk) = ut(x, t
−
k ), k = 1, 2, · · · .

(H6) αk(x, tk, u(x, tk)), βk(x, tk, ut(x, tk)) ∈ PC(Ω̄ × R+ × R,R), k = 1, 2, · · · ,
and there exist positive constants ak, a∗k, bk, b∗k with bk ≤ a∗k such that for

k = 1, 2, · · ·

a∗k ≤
αk(x, tk, u(x, tk))

u(x, tk)
≤ ak,

b∗k ≤
βk(x, tk, ut(x, tk))

ut(x, tk)
≤ bk.

This work is planned as follows: Section 2, we will give the definitions and

notations. In Section 3, we deal with the oscillation of the problem (E) and (B1).

In Section 4, we discuss the oscillation of the problem (E) and (B2). Section 5,

presents an example to illustrate the main results.

2. Preliminaries

In this section, we introduce definitions and some well-known results which are

needed throughout this paper.
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Definition 2.1. A solution u of (E) is a function u ∈ C2(Ω̄× [t−1,+∞),R)∩C(Ω̄×
[t̃−1,+∞),R) that satisfies (E), where

t−1 = min

{
0, inf

t≥0
τ(t)

}
and

t̃−1 = min

{
0, min

ξ∈[a,b]

{
inf
t≥0

g(t, ξ)

}
, min
ξ∈[a,b]

{
inf
t≥0

h(t, ξ)

}}
.

Definition 2.2. For any function k(t, s) ∈ C([t0,+∞) × [t0, t),R), σ ≥ t0 ≥ 0, we

define the linear integral operator Lρσ as

Lρσ(k(t, s)) =

∫ t

σ

ρ(s)(t− s)αk(t, s)ds,

where α > 1 is a constant, ρ ∈ C ′([t0,+∞),R) with ρ > 0.

If
∂k(t, s)

∂s
∈ C([t0,+∞)× [t0, t),R), we get

Lρσ
(
∂k(t, s)

∂s

)
= −ρ(σ)(t− σ)αk(t, σ)− Lρσ

[(
−α
t− s

+
ρ′(s)

ρ(s)

)
k(t, s)

]
.

Definition 2.3. The solution u of (E), (B1) [(E), (B2)] is said to be oscillatory in

G if for any positive number ` there exist a point

(x0, t0) ∈ Ω× [`,+∞) such that u(x0, t0) = 0 holds.

Definition 2.4. A function V (t) is said to be eventually positive (negative) if there

exists a t1 ≥ t0 such that V (t) > 0 (< 0) holds for all t ≥ t1.

It is known that [21] the smallest eigenvalue λ0 > 0 of the eigenvalue problem

∆ω(x) + λω(x) = 0 in Ω

ω(x) = 0 on ∂Ω

and we can choose the corresponding eigenfunction Φ(x) > 0 in Ω.

For each positive solution u(x, t) of (E), (B1) [(E), (B2)] we associate the

functions V (t) and Ṽ (t) defined by

V (t) = KΦ

∫
Ω

u(x, t)Φ(x)dx, Ṽ (t) =
1

|Ω|

∫
Ω

u(x, t)dx, and

F (t) = εg0

∫ b

a

Q(t, ξ)dη(ξ),
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where

KΦ =

(∫
Ω

Φ(x)dx

)−1

, |Ω| =
∫

Ω

dx, and g0 = 1− c(g(t, ξ)).

3. Oscillation of the Problem (E) and (B1)

In this section, we establish sufficient conditions for the oscillation of all solutions

of (E) and (B1).

Theorem 3.1. If the impulsive functional differential inequality

(r(t)Z ′(t))′ + p(t)Z ′(t) + F (t)Z(θ(t)) ≤ 0, t 6= tk

a∗k ≤
Z(t+k )

Z(tk)
≤ ak,

b∗k ≤
Z ′(t+k )

Z ′(tk)
≤ bk, k = 1, 2, · · ·


(1)

has no eventually positive solution, then every solution of the boundary value problem

defined by (E) and (B1) is oscillatory in G.

Proof. Assume the contrary that u(x, t) 6= 0 is a solution of the boundary value

problem (E), (B1). Which has a constant sign in the domain Ω× [t0,+∞). Assume

that u(x, t) > 0, (x, t) ∈ Ω× [t0,+∞), t0 ≥ 0. By the assumption that there exists

a t1 > t0 such that g(t, ξ) ≥ t0, h(t, ξ) ≥ t0 for (t, ξ) ∈ [t1,+∞)× [a, b] and τ(t) ≥ t0

for t ≥ t1, then

u(x, g(t, ξ)) > 0 for (x, t, ξ) ∈ Ω× [t1,+∞)× [a, b],

u(x, τ(t)) > 0 for (x, t) ∈ Ω× [t1,+∞),

and u(x, h(t, ξ)) > 0 for (x, t, ξ) ∈ Ω× [t1,+∞)× [a, b].
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For t ≥ t0, t 6= tk, k = 1, 2, · · · ,multiplying both sides of equation (E) byKΦΦ(x) >

0 and taking integration with respect to x over the domain Ω, we obtain

d

dt

[
r(t)

d

dt

(∫
Ω
u(x, t)KΦΦ(x)dx+ c(t)

∫
Ω
u(x, τ(t))KΦΦ(x)dx

)]
+p(t)

d

dt

(∫
Ω
u(x, t)KΦΦ(x)dx+ c(t)

∫
Ω
u(x, τ(t))KΦΦ(x)dx

)
+
∫

Ω

∫ b
a
q(x, t, ξ)f(u(x, g(t, ξ)))KΦΦ(x)dη(ξ)dx

= a(t)
∫

Ω
∆u(x, t)KΦΦ(x)dx−

∫ b
a
b(t, ξ)

∫
Ω

∆u(x, h(t, ξ))KΦΦ(x)dxdη(ξ).


(2)

From Green’s formula and boundary condition (B1),

KΦ

∫
Ω

∆u(x, t)Φ(x)dx = KΦ

∫
∂Ω

[
Φ(x)

∂u

∂γ
− u∂Φ(x)

∂γ

]
dS +KΦ

∫
Ω

u(x, t)∆Φ(x)dx

= −λ0V (t) ≤ 0 (3)

and

KΦ

∫
Ω

∆u(x, h(t, ξ))Φ(x)dx = KΦ

∫
∂Ω

[
Φ(x)

∂u(x, h(t, ξ))

∂γ
− u(x, h(t, ξ))

∂Φ(x)

∂γ

]
dS

+KΦ

∫
Ω

u(x, h(t, ξ))∆Φ(x)dx

= −λ0V (h(t, ξ)) ≤ 0, (4)

where dS is surface element on ∂Ω. Moreover using Jensen’s inequality, from (H2)

and assumptions, it follows that

∫
Ω

∫ b

a

q(x, t, ξ)f(u(x, g(t, ξ)))KΦΦ(x)dη(ξ)dx

≥
∫ b

a

Q(t, ξ)

∫
Ω

f(u(x, g(t, ξ)))KΦΦ(x)dxdη(ξ)

≥
∫ b

a

Q(t, ξ)ε

∫
Ω

u(x, g(t, ξ))KΦΦ(x)dxdη(ξ)

≥ ε

∫ b

a

Q(t, ξ)V (g(t, ξ))dη(ξ). (5)
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In view of (2)-(5), we obtain

d

dt

[
r(t)

d

dt
(V (t) + c(t)V (τ(t)))

]
+ p(t)

d

dt
(V (t) + c(t)V (τ(t)))

+ ε

∫ b

a

Q(t, ξ)V (g(t, ξ))dη(ξ) ≤ 0.

Set Z(t) = V (t) + c(t)V (τ(t)). Then

(r(t)Z ′(t))
′
+ p(t)Z ′(t) + ε

∫ b

a

Q(t, ξ)V (g(t, ξ))dη(ξ) ≤ 0, t 6= tk. (6)

It is easy to obtain that Z(t) > 0 for t ≥ t1. Next we prove that Z ′(t) > 0 for t ≥ t2.

Assume the contrary, there exists T ≥ t2 such that Z ′(T ) ≤ 0.

(r(t)Z ′(t))
′
+ p(t)Z ′(t) ≤ 0, t ≥ t2

r(t)Z ′′(t) + (r′(t) + p(t))Z ′(t) ≤ 0, t ≥ t2. (7)

From (H1), we have R′(t) = R(t)

(
r′(t) + p(t)

r(t)

)
and R(t) > 0, R′(t) ≥ 0 for t ≥ t2.

We multiply
R(t)

r(t)
on both sides of (7), we have

R(t)Z ′′(t) +R′(t)Z ′(t) = (R(t)Z ′(t))
′ ≤ 0, t ≥ t2. (8)

From (8), we have R(t)Z ′(t) ≤ R(T )Z ′(T ) ≤ 0, t ≥ T . Thus∫ t

T

Z ′(s)ds ≤
∫ t

T

R(T )Z ′(T )

R(s)
ds, t ≥ T

Z(t) ≤ Z(T ) +R(T )Z ′(T )

∫ t

T

ds

R(s)
, t ≥ T.

From the hypotheses (H1), we have lim
t→+∞

Z(t) = −∞. This contradicts that Z(t) > 0

for t ≥ 0. Thus Z ′(t) > 0 and τ(t) ≤ t for t ≥ t1, we have

V (t) = Z(t)− c(t)V (τ(t))

V (t) ≥ Z(t)− c(t)Z(t)

V (t) ≥ Z(t)(1− c(t))

and
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V (g(t, ξ)) ≥ Z(g(t, ξ))(1− c(g(t, ξ)))

V (g(t, ξ)) ≥ g0Z(g(t, ξ)).

Therefore from (6), we have

(r(t)Z ′(t))
′
+ p(t)Z ′(t) + ε g0

∫ b

a

Q(t, ξ)Z(g(t, ξ))dη(ξ) ≤ 0, t ≥ t1.

From (H3) and (H4), we have

Z[g(t, ξ)] ≥ Z[g(t, a)] > 0, ξ ∈ [a, b] and θ(t) ≤ g(t, a) ≤ t,

thus, Z(θ(t)) ≤ Z(g(t, a)) for t ≥ t1. Therefore

(r(t)Z ′(t))
′
+ p(t)Z ′(t) + ε

∫ b

a

Q(t, ξ)Z(θ(t))dη(ξ) ≤ 0, t ≥ t1,

(r(t)Z ′(t))
′
+ p(t)Z ′(t) + F (t)Z(θ(t)) ≤ 0, t ≥ t1.

For t ≥ t0, t = tk, k = 1, 2, · · · , multiplying both sides of the equation (E)

by KΦΦ(x) > 0, taking integration with respect to x over the domain Ω, and from

(H6), we obtain

a∗k ≤
u(x, t+k )

u(x, t+k )
≤ ak, b∗k ≤

ut(x, tk)

ut(x, tk)
≤ bk.

From assumptions we have,

a∗k ≤
V (t+k )

V (tk)
≤ ak, b∗k ≤

V ′(t+k )

V ′(tk)
≤ bk,

and

a∗k ≤
Z(t+k )

Z(tk)
≤ ak, b∗k ≤

Z ′(t+k )

Z ′(tk)
≤ bk.

Therefore Z(t) > 0 is solution of (1). This contradicts the hypothesis and completes

the proof. �

Theorem 3.2. Suppose that

lim sup
t→+∞

1

tα
Lρt0

{ ∏
t0≤tk<s

(
bk
a∗k

)−1
[
F (s)− r(θ(s))

4θ′(s)

(
p(s)

r(s)
−
(
−α
t− s

+
ρ
′
(s)

ρ(s)

))2
]}

= +∞

(9)

then every solution u of the boundary value problem (E), (B1) is oscillatory in G.
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Proof. To prove the solutions of (E), (B1) are oscillatory in G, from Theorem 3.1,

it is enough to prove that the impulsive functional differential inequality (1) has no

eventually positive solutions. Suppose that Z(t) > 0 is a solution of the inequality

(1). Define

W (t) =
r(t)Z ′(t)

Z(θ(t))
, t ≥ t0.

Then

W ′(t) ≤ − θ′(t)

r(θ(t))
W 2(t)− p(t)

r(t)
W (t)− F (t), (10)

W (t+k ) ≤ bk
a∗k
W (tk).

Define

U(t) =
∏

t0≤tk<t

(
bk
a∗k

)−1

W (t).

In fact, W (t) is continuous on each interval (tk, tk+1], and in view of

W (t+k ) ≤ bk
a∗k
W (tk). It follows that for t ≥ t0,

U(t+k ) =
∏

t0≤tj≤tk

(
bk
a∗k

)−1

W (t+k ) ≤
∏

t0≤tj<tk

(
bk
a∗k

)−1

W (tk) = U(tk)

and for all t ≥ t0,

U(t−k ) =
∏

t0≤tj≤tk−1

(
bk
a∗k

)−1

W (t−k ) ≤
∏

t0≤tj<tk

(
bk
a∗k

)−1

W (tk) = U(tk)

which implies that U(t) is continuous on [t0,+∞).

U ′(t) +
∏

t0≤tk<t

(
bk
a∗k

)
U2(t)θ′(t)

r(θ(t))
+
p(t)

r(t)
U(t) +

∏
t0≤tk<t

(
bk
a∗k

)−1

F (t)

=
∏

t0≤tk<t

(
bk
a∗k

)−1

W ′(t) +
∏

t0≤tk<t

(
bk
a∗k

) ∏
t0≤tk<t

(
bk
a∗k

)−2
θ′(t)

r(θ(t))
W 2(t)

+
∏

t0≤tk<t

(
bk
a∗k

)−1
p(t)

r(t)
W (t) +

∏
t0≤tk<t

(
bk
a∗k

)−1

F (t)
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=
∏

t0≤tk<t

(
bk
a∗k

)−1 [
W ′(t) +W 2(t)

θ′(t)

r(θ(t))
+W (t)

p(t)

r(t)
+ F (t)

]
≤ 0.

That is

U ′(t) ≤ −
∏

t0≤tk<t

(
bk
a∗k

)
θ′(t)

r(θ(t))
U2(t)− p(t)

r(t)
U(t)−

∏
t0≤tk<t

(
bk
a∗k

)−1

F (t). (11)

Apply the operator Lρσ to (11), with t replaced by s, we get

Lρσ
(
∂U

∂s

)
≤ Lρσ

[
−

∏
t0≤tk<s

(
bk
a∗k

)
θ′(t)

r(θ(t))
U2(s)− p(s)

r(s)
U(s)−

∏
t0≤tk<s

(
bk
a∗k

)−1

F (s)

]

− ρ(σ)(t− σ)αU(σ)− Lρσ
[(
−α
t− s

+
ρ′(s)

ρ(s)

)
U(s)

]
≤ −Lρσ

[ ∏
t0≤tk<s

(
bk
a∗k

)
θ′(s)

r(θ(s))
U2(s) +

p(s)

r(s)
U(s) +

∏
t0≤tk<s

(
bk
a∗k

)−1

F (s)

]

− Lρσ
[(
−α
t− s

+
ρ′(s)

ρ(s)

)
U(s)

]
+ Lρσ

[√√√√ ∏
t0≤tk<s

(
bk
a∗k

)
θ′(s)

r(θ(s))
U(s)

2

+ 2

√√√√ ∏
t0≤tk<s

(
bk
a∗k

)
θ′(s)

r(θ(s))
U(s)× 1

2

p(s)

r(s)

√√√√ ∏
t0≤tk<s

(
bk
a∗k

)−1
r(θ(s))

θ′(s)


+

1

4

p2(s)

r2(s)

∏
t0≤tk<s

(
bk
a∗k

)−1
r(θ(s))

θ′(s)
− 1

4

p2(s)

r2(s)

∏
t0≤tk<s

(
bk
a∗k

)−1
r(θ(s))

θ′(s)
+

∏
t0≤tk<s

(
bk
a∗k

)−1

F (s)

]
≤ ρ(σ)(t− σ)αU(σ)

− Lρσ
[(
−α
t− s

+
ρ′(s)

ρ(s)

)
U(s)

]

+ Lρσ

√√√√ ∏
t0≤tk<s

(
bk
a∗k

)
θ′(s)

r(θ(s))
U(s) +

1

2

p(s)

r(s)

√√√√ ∏
t0≤tk<s

(
bk
a∗k

)−1
r(θ(s))

θ′(s)

2
+ Lρσ

[ ∏
t0≤tk<s

(
bk
a∗k

)−1

F (s)− 1

4

p2(s)

r2(s)

∏
t0≤tk<s

(
bk
a∗k

)−1
r(θ(s))

θ′(s)

]
≤ ρ(σ)(t− σ)αU(σ).

(12)
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Denote

Y (s) =

√√√√ ∏
t0≤tk<s

(
bk
a∗k

)
θ′(s)

r(θ(s))
U(s) +

1

2

p(s)

r(s)

√√√√ ∏
t0≤tk<s

(
bk
a∗k

)−1
r(θ(s))

θ′(s)
.

Applying the above Y (s) in (12), we get

− Lρσ
[(
−α
t− s

+
ρ′(s)

ρ(s)

)
U(s)

]
+ Lρσ(Y 2(s)) + Lρσ

[ ∏
t0≤tk<s

(
bk
a∗k

)−1

F (s)− 1

4

p2(s)

r2(s)

∏
t0≤tk<s

(
bk
a∗k

)−1
r(θ(s))

θ′(s)

]
≤ ρ(σ)(t− σ)αU(σ)

Lρσ

Y (s)− 1

2

(
−α
t− s

+
ρ′(s)

ρ(s)

)√√√√ ∏
t0≤tk<s

(
bk
a∗k

)−1
r(θ(s))

θ′(s)

2
+ Lρσ

[ ∏
t0≤tk<s

(
bk
a∗k

)−1

F (s)−
∏

t0≤tk<s

(
bk
a∗k

)−1
r(θ(s))

4θ′(s)

(
p(s)

r(s)
−
(
−α
t− s

+
ρ′(s)

ρ(s)

))2
]

≤ ρ(σ)(t− σ)αU(σ). (13)

Note that, the first term of (13) is nonnegative, so

Lρσ

[ ∏
t0≤tk<s

(
bk
a∗k

)−1

F (s)−
∏

t0≤tk<s

(
bk
a∗k

)−1
r(θ(s))

4θ′(s)

(
p(s)

r(s)
−
(
−α
t− s

+
ρ′(s)

ρ(s)

))2
]

≤ ρ(σ)tα
(

1− σ

t

)α
U(σ), t ≥ s ≥ t0. (14)

Let σ = t0 and taking lim sup in (14) as t→ +∞, we get

lim sup
t→+∞

1

tα
Lρt0

{ ∏
t0≤tk<s

(
bk
a∗k

)−1
[
F (s)− r(θ(s))

4θ′(s)

(
p(s)

r(s)
−
(
−α
t− s

+
ρ′(s)

ρ(s)

))2
]}

≤ ρ(t0)U(t0) < +∞, (15)

which is a contradiction to (9). This completes the proof. �

Corollary 3.3. If (9) in Theorem 3.2 is replaced by

lim sup
t→+∞

1

tα
Lρt0

[ ∏
t0≤tk<s

(
bk
a∗k

)−1

F (s)

]
= +∞
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and

lim sup
t→+∞

1

tα
Lρt0

[ ∏
t0≤tk<s

(
bk
a∗k

)−1
r(θ(s))

4θ′(s)

(
p(s)

r(s)
−
(
−α
t− s

+
ρ′(s)

ρ(s)

))2
]
< +∞,

then every solution u of (E), (B1) is oscillatory in G.

4. Oscillation of the Problem (E) and (B2)

In this section, we investigate the oscillation of the problem (E) and (B2).

Theorem 4.1. If the impulsive functional differential inequality

(r(t)Z̃ ′(t))′ + p(t)Z̃ ′(t) + F (t)Z̃(θ(t)) ≤ 0, t 6= tk

a∗k ≤
Z̃(t+k )

Z̃(tk)
≤ ak,

b∗k ≤
Z̃ ′(t+k )

Z̃ ′(tk)
≤ bk, k = 1, 2, · · ·


(16)

has no eventually positive solution, then every solution of the boundary value problem

defined by (E) and (B2) is oscillatory in G.

Proof. Suppose to the contrary that u(x, t) 6= 0 is solution of the boundary value

problem (E), (B2). Which has a constant sign in the domain Ω× [t0,+∞). Assume

that u(x, t) > 0, (x, t) ∈ Ω× [t0,+∞), t0 ≥ 0. By the assumption that there exists

a t1 > t0 such that g(t, ξ) ≥ t0, h(t, ξ) ≥ t0 for (t, ξ) ∈ [t1,+∞)× [a, b] and τ(t) ≥ t0

for t ≥ t1, then

u(x, g(t, ξ)) > 0 for (x, t, ξ) ∈ Ω× [t1,+∞)× [a, b],

u(x, τ(t)) > 0 for (x, t) ∈ Ω× [t1,+∞),

and u(x, h(t, ξ)) > 0 for (x, t, ξ) ∈ Ω× [t1,+∞)× [a, b].

For t ≥ t0, t 6= tk, k = 1, 2, · · · , multiplying both sides of equation (E) by
1

|Ω|
and

integrating with respect to x over the domain Ω, we have
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d

dt

[
r(t)

d

dt

(
1

|Ω|
∫

Ω
u(x, t)dx+

1

|Ω|
c(t)

∫
Ω
u(x, τ(t))dx

)]
+p(t)

d

dt

(
1

|Ω|
∫

Ω
u(x, t)dx+

1

|Ω|
c(t)

∫
Ω
u(x, τ(t))dx

)
+

1

|Ω|
∫

Ω

∫ b
a
q(x, t, ξ)f(u(x, g(t, ξ)))dη(ξ)dx

= a(t)
1

|Ω|
∫

Ω
∆u(x, t)dx−

∫ b
a
b(t, ξ)

1

|Ω|
∫

Ω
∆u(x, h(t, ξ))dxdη(ξ).


(17)

From Green’s formula and boundary condition (B2), yield∫
Ω

∆u(x, t)dx =

∫
∂Ω

∂u

∂γ
dS = −

∫
∂Ω

µ(x, t)u(x, t)dS ≤ 0, (18)

and ∫
Ω

∆u(x, h(t, ξ))dx =

∫
∂Ω

∂u(x, h(t, ξ))

∂γ
dS

= −
∫
∂Ω

µ(x, h(t, ξ))u(x, h(t, ξ))dS ≤ 0, (19)

where dS is the surface element on ∂Ω. Also from (H2) and Jensen’s inequality, we

have

1

|Ω|

∫
Ω

∫ b

a

q(x, t, ξ)f(u(x, g(t, ξ)))dη(ξ)dx

≥
∫ b

a

Q(t, ξ)
1

|Ω|

∫
Ω

f(u(x, g(t, ξ)))dxdη(ξ)

≥
∫ b

a

Q(t, ξ) ε
1

|Ω|

∫
Ω

u(x, g(t, ξ))dxdη(ξ)

≥
∫ b

a

Q(t, ξ)ε Ṽ (g(t, ξ))dη(ξ). (20)

In view of (17)-(20), yield

d

dt

[
r(t)

d

dt

(
Ṽ (t) + c(t)Ṽ (τ(t))

)]
+ p(t)

d

dt

(
Ṽ (t) + c(t)Ṽ (τ(t))

)
+ ε

∫ b

a

Q(t, ξ)Ṽ (g(t, ξ))dη(ξ) ≤ 0.
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Set Z̃(t) = Ṽ (t) + c(t)Ṽ (τ(t)). Then(
r(t)Z̃ ′(t)

)′
+ p(t)Z̃ ′(t) + ε

∫ b

a

Q(t, ξ)Ṽ (g(t, ξ))dη(ξ) ≤ 0, t 6= tk. (21)

Rest of the proof is similar to Theorem 3.1, and therefore we omit it. �

Theorem 4.2. Suppose that

lim sup
t→+∞

1

tα
Lρt0

{ ∏
t0≤tk<s

(
bk
a∗k

)−1
[
F (s)−r(θ(s))

4θ′(s)

(
p(s)

r(s)
−
(
−α
t− s

+
ρ
′
(s)

ρ(s)

))2
]}

= +∞

(22)

then every solution u of the boundary value problem (E), (B2) is oscillatory in G.

Proof. The proof is similar to that of Theorem 3.2 and therefore the details are

omitted. �

Corollary 4.3. If (22) in Theorem 4.2 is replaced by

lim sup
t→+∞

1

tα
Lρt0

[ ∏
t0≤tk<s

(
bk
a∗k

)−1

F (s)

]
= +∞

and

lim sup
t→+∞

1

tα
Lρt0

[ ∏
t0≤tk<s

(
bk
a∗k

)−1
r(θ(s))

4θ′(s)

(
p(s)

r(s)
−
(
−α
t− s

+
ρ′(s)

ρ(s)

))2
]
< +∞,

then every solution u of (E), (B2) is oscillatory in G.

5. Example

In this section, we will present an example to illustrate the main results.

Example 5.1. Consider the following equation of the form

∂

∂t

[
2
∂

∂t

(
u(x, t) +

1

2
u(x, t− π)

)]
+

(
−8

5

)
∂

∂t

(
u(x, t) +

1

2
u(x, t− π)

)
+

4

5

∫ −π/4
−π/2 u(x, t+ 2ξ)dξ =

1

5
∆u(x, t)− 12

5

∫ −π/4
−π/2 ∆u(x, t+ 2ξ)dξ,

t > 1, t 6= 2k, k = 1, 2, · · · ,

u(x, (2k)+) =
k + 1

k
u(x, 2k),

ut(x, (2
k)+) = ut(x, 2

k), k = 1, 2, · · ·


(23)
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for (x, t) ∈ (0, π)× R+, with the boundary condition

u(0, t) = u(π, t) = 0, t 6= 2k. (24)

Here Ω = (0, π), ak = a∗k =
k + 1

k
, bk = b∗k = 1, r(t) = 2, c(t) =

1

2
, τ(t) = t − π,

p(t) = −8

5
, Q(t, ξ) =

4

5
, g(t, ξ) = h(t, ξ) = t + 2ξ, a(t) =

1

5
, b(t, ξ) =

12

5
, η(ξ) = ξ,

α = 2, θ(t) = t, ρ(t) = 2, ε = 1. Since t0 = 1, tk = 2k, g0 = 1 − c(g(t, ξ)) =
1

2
,

F (t) = 1× 1

2
×
∫ −π/4
−π/2

4

5
dξ =

π

10
. Then hypotheses (H1)− (H6) hold, moreover

lim
t→+∞

∫ t

t0

∏
t0≤tk<s

a∗k
bk
ds =

∫ +∞

1

∏
1<tk<s

k

k + 1
ds

=

∫ t1

1

∏
1<tk<s

k

k + 1
ds+

∫ t2

t+1

∏
1<tk<s

k

k + 1
ds+

∫ t3

t+2

∏
1<tk<s

k

k + 1
ds+ · · ·

= 1 +
1

2
× 2 +

1

2
× 2

3
× 22 +

1

2
× 2

3
× 3

4
× 23 + · · ·

=
+∞∑
n=0

2n

n+ 1
= +∞.

Thus,

lim sup
t→+∞

1

t2

{∫ t

1

∏
1<tk<s

k

k + 1

(
(t− s)2

[
π

5
−
(
−4

5
+

2

t− s

)2
])

ds

}
= +∞.

Hence (9) holds. Therefore all the conditions of the Theorem 3.2 are satisfied.

Therefore, every solution of equation (23)-(24) is oscillatory in Ω × R+. In fact

u(x, t) = sin x cos t is such a solution.
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