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1. Introduction

The oscillation theory of ordinary differential equations marks its initiation

through the research article of C.Sturm [19] in 1836 and for partial differential

equations by P.Hartman and A.Wintner [6] in 1955. In 1989, the early work on

impulsive delay differential equations [3] was published and its results were

included in monograph [9]. After two years the most important exertion concluded

in [2] on impulsive partial differential equations in 1991. Numerous substantial

phenomena are articulated in terms of second order equations. The theoretical

background of the second and even order equations are nearly common and for this

reason, we study the even order equations. Impulsive ordinary and partial

functional differential equations have wide range of applications in a variety of

fields of science and machinery [1, 8, 18, 24].
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The oscillation of impulsive and non-impulsive parabolic and hyperbolic

equations has been widely studied in the literature [13, 15, 16, 17, 20, 21, 25].

Curiously very few significant consequences on higher order partial differential

equations with continuous distributed deviating arguments have been studied in

[4, 10, 11, 12, 23]. But these are not considered with impulsive force.

Consequently, it is necessary to study with impulse effect on the oscillation of

higher order partial differential equations. To the best of authors’ acquaintance,

there are no theoretical results on the oscillation of higher order nonlinear

impulsive neutral partial differential equations with continuous distributed

deviating arguments. In this fashion, we initiate oscillatory results for even order

nonlinear impulsive neutral partial differential equations with continuous

distributed deviating arguments of the type (E), (B1)[(E), (B2)]. Focal results of

this manuscript expand and improve numerous findings in the earlier publications

of non-impulse type equations. We think likely that this primary work attain the

absorption of numerous researchers working on the even order impulsive partial

functional differential equations.
In this work, we focus on the following even order nonlinear impulsive neutral

partial functional differential equation with continuous distributed deviating
arguments

∂m

∂tm
[u(x, t) + c(t)u(x, τ(t))] +

∫ b
a q(x, t, ξ)f(u(x, σ(t, ξ)))dη(ξ)

= a(t)∆u(x, t)−
∫ b
a b(t, ξ)∆u(x, ρ(t, ξ))dη(ξ), t 6= tk, (x, t) ∈ Ω× (0,+∞) ≡ G

∂(i)u(x, t+k )

∂t(i)
= I

(i)
k

(
x, tk,

∂(i)u(x, tk)

∂t(i)

)
, t = tk, k = 1, 2, · · · , i = 0, 1, 2, · · · ,m− 1


(E)

where Ω is a bounded domain in RN with a piecewise smooth boundary ∂Ω and ∆

is the Laplacian in the Euclidean space RN .
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Equation (E) is enhancement with one of the subsequent Dirichlet and Robin

boundary conditions,

u = 0, (x, t) ∈ ∂Ω× (0,+∞) (B1)

∂u

∂γ
+ µ(x, t)u = 0, (x, t) ∈ ∂Ω× (0,+∞) (B2)

where γ is the outer surface normal vector to ∂Ω and

µ(x, t) ∈ C (∂Ω× [0,+∞), [0,+∞)).

In the sequel, we assume that the following hypotheses (H) hold:

(H1) a(t) ∈ PC ([0,+∞), [0,+∞)), where PC represents the class of functions

which are piecewise continuous in t with discontinuities of first kind only at

t = tk, k = 1, 2, · · · , and left continuous at t = tk, k = 1, 2, · · · , τ(t) ∈
C([0,+∞),R) and lim

t→+∞
τ(t) = +∞.

(H2) c(t) ∈ Cm([0,+∞), [0,+∞)), q(x, t, ξ) ∈ C(Ω̄ × [0,+∞) × [a, b], [0,+∞)),

Q(t, ξ) = min
x∈Ω̄

q(x, t, ξ), b(t, ξ) ∈ C([0,+∞)× [a, b], [0,+∞)), f(u) ∈ C(R,R)

is convex in [0,+∞), uf(u) > 0 and
f(u)

u
≥ ε > 0 for u 6= 0.

(H3) σ(t, ξ), ρ(t, ξ) ∈ C([0,+∞)× [a, b],R), σ(t, ξ) ≤ t, ρ(t, ξ) ≤ t for ξ ∈ [a, b],

σ(t, ξ) and ρ(t, ξ) are nondecreasing with respect to t and ξ respectively

and lim inf
t→+∞, ξ∈[a,b]

σ(t, ξ) = lim inf
t→+∞, ξ∈[a,b]

ρ(t, ξ) = +∞, a, b are non-positive

constants with a < b.

(H4) There exists a function θ(t) ∈ C([0,+∞), [0,+∞)) satisfying θ(t) ≤ σ(t, a),

θ
′
(t) > 0 and lim

t→+∞
θ(t) = +∞, η(ξ) : [a, b] → R is nondecreasing and the

integral is a Stieltjes integral in (E).

(H5)
∂(i)u(x, t)

∂t(i)
are piecewise continuous in t with discontinuities of first kind

only at t = tk, k = 1, 2, · · · , and left continuous at t = tk,
∂(i)u(x, tk)

∂t(i)
=

∂(i)u(x, t−k )

∂t(i)
, k = 1, 2, · · · , i = 0, 1, 2, · · · ,m− 1.

(H6) I
(i)
k

(
x, tk,

∂(i)u(x, tk)

∂t(i)

)
∈ PC(Ω̄ × [0,+∞) × R,R), k = 1, 2, · · · , i =

0, 1, 2, · · · ,m − 1, and there exist positive constants a
(i)
k , b

(i)
k with
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b
(m−1)
k ≤ a

(0)
k such that for i = 0, 1, 2, · · · ,m− 1, k = 1, 2, · · · ,

a
(i)
k ≤

I
(i)
k

(
x, tk,

∂(i)u(x, tk)

∂t(i)

)
∂(i)u(x, tk)

∂t(i)

≤ b
(i)
k .

This paper is considered as follows: Section 2, presents the definitions and

notations. In section 3, we deal with the oscillation of the problem (E) and (B1).

In section 4, we discuss the oscillation of the problem (E) and (B2). Section 5,

presents examples to illustrate the main results.

2. Preliminaries

In this section, we begin with definitions and known results which are required

throughout this paper.

Definition 2.1. A solution u of the problem (E) is a function

u ∈ Cm(Ω̄× [t−1,+∞),R) ∩ C(Ω̄× [t̂−1,+∞),R) that satisfies (E), where

t−1 := min

{
0, inf

t≥0
τ(t)

}
and

t̂−1 := min

{
0, min

ξ∈[a,b]

{
inf
t≥0

σ(t, ξ)

}
, min
ξ∈[a,b]

{
inf
t≥0

ρ(t, ξ)

}}
.

Definition 2.2. The solution u of the problem (E), (B1) [(E), (B2)] is said to be

oscillatory in the domain G if for any positive number ` there exist a point (x0, t0) ∈
Ω× [`,+∞) such that u(x0, t0) = 0 holds.

Definition 2.3. A function V (t) is said to be eventually positive (negative) if there

exists a t1 ≥ t0 such that V (t) > 0 (< 0) holds for all t ≥ t1.

It is identified that [22] the least eigenvalue λ0 > 0 of the eigenvalue problem

∆ω(x) + λω(x) = 0 in Ω

ω(x) = 0 on ∂Ω

and the consequent eigenfunction Φ(x) > 0 in Ω.
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For each positive solution u(x, t) of the problem (E), (B1) [(E), (B2)] we combine

the functions V (t) and Ṽ (t) defined by

V (t) = KΦ

∫
Ω

u(x, t)Φ(x)dx, Ṽ (t) =
1

|Ω|

∫
Ω

u(x, t)dx,

F (t) = M(θ(t))m−2θ′(t), and G(t) = εg0

∫ b

a

Q(t, ξ)dη(ξ)

where

KΦ =

(∫
Ω

Φ(x)dx

)−1

, |Ω| =
∫

Ω

dx, and g0 = 1− c(σ(t, ξ)).

Lemma 2.4. [7] Let y(t) be a positive and n times differentiable function on [0,+∞).

If y(n)(t) is constant sign and not identically zero on any ray [t1,+∞) for t1 > 0, then

there exists a ty ≥ t1 and integer l (0 ≤ l ≤ n), with n + l even for y(t)y(n)(t) ≥ 0

or n + l odd for y(t)y(n)(t) ≤ 0; and for t ≥ ty, y(t)y(k)(t) > 0, 0 ≤ k ≤ l;

(−1)k−ly(t)y(k)(t) > 0, l ≤ k ≤ n.

Lemma 2.5. [14] Suppose that the conditions of Lemma 2.4 is satisfied, and

y(n−1)(t)y(n)(t) ≤ 0, t ≥ ty.

Then there exist constant α ∈ (0, 1) and M > 0 such that for sufficiently large t

|y′(αt)| ≥Mtn−2
∣∣y(n−1)(t)

∣∣ .
Lemma 2.6. [5] If X and Y are nonnegative, then

Xα − αXY α−1 + (α− 1)Y α ≥ 0, α > 1

Xα − αXY α−1 − (1− α)Y α ≤ 0, 0 < α < 1,

where the equality holds if and only if X = Y .

3. Oscillation of the Problem (E) and (B1)

In this section, we establish sufficient conditions for the oscillation of all

solutions of the problem (E), (B1).
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Lemma 3.1. If the functional impulsive differential inequality

Z(m)(t) +G(t)Z(θ(t)) ≤ 0, t 6= tk

a
(i)
k ≤

∂(i)Z(t+k )

∂t(i)

∂(i)Z(tk)

∂t(i)

≤ b
(i)
k , k = 1, 2, · · · , i = 0, 1, 2, · · · ,m− 1


(1)

has no eventually positive solution, then every solution of the boundary value problem

defined by (E) and (B1) is oscillatory in G.

Proof. Assume that there exist a nonoscillatory solution u(x, t) of the boundary

value problem (E), (B1) and u(x, t) > 0. By the hypothesis (H1) and (H3), that

there exists a t1 > t0 > 0 such that τ(t) ≥ t0, σ(t, ξ), ρ(t, ξ) ≥ t0 for (t, ξ) ∈
[t1,+∞)× [a, b] for t ≥ t1, then

u(x, τ(t)) > 0 for (x, t) ∈ Ω× [t1,+∞),

u(x, σ(t, ξ)) > 0 for (x, t, ξ) ∈ Ω× [t1,+∞)× [a, b]

and u(x, ρ(t, ξ)) > 0 for (x, t, ξ) ∈ Ω× [t1,+∞)× [a, b].

For t ≥ t0, t 6= tk, k = 1, 2, · · · ,multiplying both sides of equation (E) byKΦΦ(x) >

0 and integrating with respect to x over the domain Ω, we attain

dm

dtm
[∫

Ω
u(x, t)KΦΦ(x)dx+

∫
Ω
c(t)u(x, τ(t))KΦΦ(x)dx

]
+
∫

Ω

∫ b
a
q(x, t, ξ)f(u(x, σ(t, ξ)))KΦΦ(x)dη(ξ)dx

= a(t)
∫

Ω
∆u(x, t)KΦΦ(x)dx−

∫
Ω

∫ b
a
b(t, ξ)∆u(x, ρ(t, ξ))KΦΦ(x)dη(ξ)dx.

 (2)

From Green’s formula and boundary condition (B1), we see that

KΦ

∫
Ω

∆u(x, t)Φ(x)dx = KΦ

∫
∂Ω

[
Φ(x)

∂u

∂γ
− u∂Φ(x)

∂γ

]
dS +KΦ

∫
Ω

u(x, t)∆Φ(x)dx

= −λ0V (t) ≤ 0 (3)
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and

KΦ

∫
Ω

∆u(x, ρ(t, ξ))Φ(x)dx = KΦ

∫
∂Ω

[
Φ(x)

∂u(x, ρ(t, ξ))

∂γ
− u(x, ρ(t, ξ))

∂Φ(x)

∂γ

]
dS

+KΦ

∫
Ω

u(x, ρ(t, ξ))∆Φ(x)dx

= −λ0V (ρ(t, ξ)) ≤ 0, (4)

where dS is surface component on ∂Ω. Furthermore applying Jensen’s inequality

for convex functions and using the assumptions on (H2), we get that∫
Ω

∫ b

a

q(x, t, ξ)f(u(x, σ(t, ξ)))KΦΦ(x)dη(ξ)dx

≥
∫ b

a

Q(t, ξ)

∫
Ω

f(u(x, σ(t, ξ)))KΦΦ(x)dxdη(ξ)

=

∫ b

a

Q(t, ξ) ε

∫
Ω

u(x, σ(t, ξ))KΦΦ(x)dxdη(ξ)

≥ ε

∫ b

a

Q(t, ξ)V (σ(t, ξ))dη(ξ). (5)

In consideration of (2)-(5), we acquire

dm

dtm
[V (t) + c(t)V (τ(t))] + ε

∫ b

a

Q(t, ξ)V (σ(t, ξ))dη(ξ) ≤ 0. (6)

Set Z(t) = V (t) + c(t)V (τ(t)). Equation (6), can be written as

Z(m)(t) + ε

∫ b

a

Q(t, ξ)V (σ(t, ξ))dη(ξ) ≤ 0, t 6= tk. (7)

From the assumption of c(t) and Q(t, ξ), we have Z(t) ≥ V (t) > 0 and Z(m)(t) ≤ 0.

Simultaneously, we can further prove Z(m−1)(t) ≥ 0, t ≥ t2. In addition, from

Lemma 2.4, there exists a t3 ≥ t2 and a odd number l, 0 ≤ l ≤ m−1, and for t ≥ t3,

we have

Z(i)(t) > 0, 0 ≤ i ≤ l,

(−1)(i−1)Z(i)(t) > 0, l ≤ i ≤ m− 1.

By choosing i = 1, we have Z ′(t) > 0, since Z(t) ≥ x(t) > 0, Z ′(t) ≥ 0, we have

Z(σ(t, ξ)) ≥ Z(σ(t, ξ)− τ(t, ξ)) ≥ x(σ(t, ξ)− τ(t, ξ)),
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and thus

Z(m)(t) + ε

∫ b

a

Q(t, ξ)Z(σ(t, ξ)) (1− c(σ(t, ξ))) dη(ξ) ≤ 0. (8)

From equation (7), we get

Z(m)(t) +G(t)Z(σ(t, ξ)) ≤ 0.

From (H3) and (H4), we have

Z(σ(t, ξ)) ≥ Z(σ(t, a)) > 0, ξ ∈ [a, b] and θ(t) ≤ σ(t, ξ) ≤ t.

Thus Z(θ(t)) ≤ Z(σ(t, a)) for t ≥ t2. Then (3.8) can be written as

Z(m)(t) +G(t)Z(θ(t)) ≤ 0.

For t ≥ t0, t = tk, k = 1, 2, · · · , i = 0, 1, 2, · · · ,m− 1, multiplying both sides of

the equation (E) by KΦΦ(x) > 0, integrating with respect to x over the domain Ω,

and from (H6), we obtain

a
(i)
k ≤

∂(i)u(x, t+k )

∂t(i)

∂(i)u(x, tk)

∂t(i)

≤ b
(i)
k .

According to V (t) = KΦ

∫
Ω
u(x, t)Φ(x)dx, we have

a
(i)
k ≤

∂(i)V (x, t+k )

∂t(i)

∂(i)V (x, tk)

∂t(i)

≤ b
(i)
k .

Since Z(t) = V (t) + c(t)V (τ(t)), we obtain

a
(i)
k ≤

∂(i)Z(x, t+k )

∂t(i)

∂(i)Z(x, tk)

∂t(i)

≤ b
(i)
k .

Therefore Z(t) is an eventually positive solution of (1). This disagree with the

hypothesis. �
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Theorem 3.2. If there exists a function ϕ(t) ∈ C1([0,+∞), (0,+∞)) which is

nondecreasing with respect to t, such that∫ +∞

t1

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1 [
ϕ(s)G(s)− (ϕ′(s))2

4F (s)ϕ(s)

]
ds = +∞, (9)

then every solution of the boundary value problem (E) and (B1) is oscillatory in G.

Proof. Assume that there exists a nonoscillatory solution u(x, t) of the boundary

value problem (E), (B1) and u(x, t) > 0. Proceeding as in the proof of Lemma 3.1

to get that

Z(m)(t) +G(t)Z(θ(t)) ≤ 0,

where Z(t) = V (t) + c(t)V (τ(t)) and satisfies Z(m)(t) ≤ 0, Z(m−1)(t) ≥ 0 and an

odd number l, 0 ≤ l ≤ m− 1, such that

Z(i)(t) > 0, 0 ≤ i ≤ l, (−1)(i−1)Z(i)(t) > 0, for l ≤ i ≤ m− 1.

Define

W (t) := ϕ(t)
Z(m−1)(t)

Z(θ(t))
, t ≥ t0,

then W (t) ≥ 0 for t ≥ t1, and

W ′(t) ≤ ϕ′(t)

ϕ(t)
W (t) +

ϕ(t)Z(m)(t)

Z(θ(t))
− ϕ(t)Z(m−1)(t)Z ′(θ(t))θ′(t)

Z(θ(t))2
.

From Z(m)(t) ≤ 0, according to Lemma 2.5, we obtain

Z ′(θ(t)) ≥M(θ(t))m−2Z(m−1)(t).

Thus

W ′(t) ≤ ϕ′(t)

ϕ(t)
W (t)−G(t)ϕ(t)− F (t)

ϕ(t)
W 2(t)

W (t+k ) ≤ b
(m−1)
k

a
(0)
k

W (tk).

Define

U(t) =
∏

t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)−1

W (t).
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In fact, W (t) is continuous on each interval (tk, tk+1], and in consideration of

W (t+k ) ≤
(
b

(m−1)
k /a

(0)
k

)
W (tk). It follows for t ≥ t0 that

U(t+k ) =
∏

t0≤tj≤tk

(
b

(m−1)
k

a
(0)
k

)−1

W (t+k ) ≤
∏

t0≤tj<tk

(
b

(m−1)
k

a
(0)
k

)−1

W (tk) = U(tk)

and for all t ≥ t0, we get

U(t−k ) =
∏

t0≤tj≤tk−1

(
b

(m−1)
k

a
(0)
k

)−1

W (t−k ) ≤
∏

t0≤tj<tk

(
b

(m−1)
k

a
(0)
k

)−1

W (tk) = U(tk),

which implies that U(t) is continuous on [t0,+∞) and satisfies

U ′(t) +
∏

t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)
U2(t)F (t)

ϕ(t)
+

∏
t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)−1

G(t)ϕ(t)− ϕ′(t)U(t)

ϕ(t)

=
∏

t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)−1

W ′(t) +
∏

t0≤tk<t

(
b

(m−1)
k

a
(0)
k

) ∏
t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)−2
F (t)

ϕ(t)
W 2(t)

+
∏

t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)−1

G(t)ϕ(t)−
∏

t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)−1
ϕ′(t)

ϕ(t)
W (t)

=
∏

t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)−1 [
W ′(t) +W 2(t)

F (t)

ϕ(t)
−W (t)

ϕ′(t)

ϕ(t)
+G(t)ϕ(t)

]
≤ 0.

That is

U ′(t) ≤ −
∏

t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)
F (t)

ϕ(t)
U2(t) +

ϕ′(t)

ϕ(t)
U(t)−

∏
t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)−1

G(t)ϕ(t).

Applying Lemma 2.6 with

X =

√√√√ ∏
t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)
F (t)

ϕ(t)
U(t), Y =

ϕ′(t)

2

√√√√ ∏
t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)−1
1

F (t)ϕ(t)
,

we have

ϕ′(t)

ϕ(t)
U(t)−

∏
t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)
F (t)

ϕ(t)
U2(t) ≤ (ϕ′(t))2

4F (t)ϕ(t)

∏
t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)−1

.
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Thus

U ′(t) ≤ −
∏

t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)−1 [
G(t)ϕ(t)− (ϕ′(t))2

4F (t)ϕ(t)

]
.

Integrating both sides from t1 to t, we have

U(t) ≤ U(t1)−
∫ t

t1

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1 [
G(s)ϕ(s)− (ϕ′(s))2

4F (s)ϕ(s)

]
ds.

Letting t→ +∞, we have lim
t→+∞

U(t) = −∞, which leads to a contradiction with

U(t) ≥ 0 and completes the proof. �

Theorem 3.3. Assume that there exist functions ϕ(t) and

ρ(s) ∈ C1([0,+∞), (0,+∞)) in such that ϕ(t) is nondecreasing with respect to t,

and the functions H(t, s), h(t, s) ∈ C1(D,R), in which D = {(t, s)|t ≥ s ≥ t0 > 0} ,
such that

(H7) H(t, t) = 0, t ≥ t0; H(t, s) > 0, t > s ≥ t0,

(H8) H
′
t(t, s) ≥ 0, H

′
s(t, s) ≤ 0,

(H9) − ∂

∂s
[H(t, s)ρ(s)]−H(t, s)ρ(s)

ϕ′(s)

ϕ(s)
= h(t, s).

If

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1

Π(s)ds = +∞, (10)

where

Π(s) = G(s)ϕ(s)H(t, s)ρ(s)− 1

4

|h(t, s)|2 ϕ(s)

F (s)H(t, s)ρ(s)
,

then every solution of the boundary value problem (E), (B1) is oscillatory in G.

Proof. Assume that the boundary value problem (E), (B1) has a nonoscillatory

solution u(x, t). Without loss of generality, assume that u(x, t) > 0, (x, t) ∈ Ω ×
[0,+∞). The case for u(x, t) < 0 can be considered in the same method. Proceeding

as in the proof of Theorem 3.2, to get

U ′(t) ≤ −
∏

t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)
F (t)

ϕ(t)
U2(t) +

ϕ′(t)

ϕ(t)
U(t)−

∏
t0≤tk<t

(
b

(m−1)
k

a
(0)
k

)−1

G(t)ϕ(t).
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Multiplying the above inequality by H(t, s)ρ(s) for t ≥ s ≥ T , and integrating from

T to t, we have∫ t

T

U ′(s)H(t, s)ρ(s)ds ≤ −
∫ t

T

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)
F (s)

ϕ(s)
U2(s)H(t, s)ρ(s)ds

+

∫ t

T

ϕ′(s)

ϕ(s)
U(s)H(t, s)ρ(s)ds

−
∫ t

T

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1

G(s)ϕ(s)H(t, s)ρ(s)ds. (11)

Thus, we have

∫ t

T

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1

G(s)ϕ(s)H(t, s)ρ(s)ds ≤ U(T )H(t, T )ρ(T )

+

∫ t

T

|h(t, s)U(s)| ds

−
∫ t

T

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)
F (s)

ϕ(s)
U2(s)H(t, s)ρ(s)ds.

(12)

Applying Lemma 2.6 with

X =

√√√√ ∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)
F (s)

ϕ(s)
H(t, s)ρ(s)U(s),

Y =
1

2
|h(t, s)|

√√√√ ∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1
ϕ(s)

F (s)H(t, s)ρ(s)
,

we attain for t > T ≥ t0 that

|h(t, s)U(s)| −
∏

t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)
F (s)

ϕ(s)
H(t, s)ρ(s)U2(s)

≤ 1

4

|h(t, s)|2 ϕ(s)

F (s)H(t, s)ρ(s)

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1

. (13)
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In addition, from (12) and (13), we have∫ t

T

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1

G(s)ϕ(s)H(t, s)ρ(s)ds− 1

4

∫ t

T

|h(t, s)|2 ϕ(s)

F (s)H(t, s)ρ(s)

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1

ds

≤ U(T )H(t, T )ρ(T ) ≤ H(t, t0)ρ(T )U(T ), t > T ≥ t0. (14)

The rest of the proof is similar to the proof given by Philos[14]. �

Remark 3.4. In Theorem 3.3, by choosing ρ(s) = ϕ(s) ≡ 1, we have the following

corollary.

Corollary 3.5. Assume that the conditions of Theorem 3.3 hold, and

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1

Γ(s)ds = +∞,

where

Γ(s) = G(s)H(t, s)− 1

4

|h(t, s)|2

F (s)H(t, s)
,

then every solution of the boundary value problem (E), (B1) is oscillatory in G.

Remark 3.6. From Theorem 3.3 and Corollary 3.5, we can attain various oscillatory

criteria by different choices of the weighted function H(t, s). For example, choosing

H(t, s) = (t − s)n−1, t ≥ s ≥ t0, in which m > 2 is an integer, then h(t, s) =

(n− 1)(t− s)(n−3)/2, t ≥ s ≥ t0. From Corollary 3.5, we have

Corollary 3.7. If there exists an integer m > 2 such that

lim sup
t→+∞

1

(t− t0)n−1

∫ t

t0

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1 [
G(s)(t− s)n−1 − 1

4

(n− 1)2

(t− s)2F (s)

]
ds = +∞,

(15)

then every solution of the boundary value problem (E), (B1) is oscillatory in G.

Theorem 3.8. Let the functions H(t, s), h(t, s), ϕ(s) and ρ(s) be as defined in

Theorem 3.3. Additionally, suppose that

0 < inf
s≥t0

{
lim inf
t→+∞

H(t, s)

H(t, t0)

}
≤ +∞,
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and

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1
|h(t, s)|2 ϕ(s)

F (s)H(t, s)ρ(s)
ds < +∞.

If there exists a function A(t) ∈ C([t0,+∞),R) such that

lim sup
t→+∞

∫ t

t0

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)
F (s)(A+(s))2

ρ(s)ϕ(s)
ds = +∞,

and for every T ≥ t0

lim sup
t→+∞

1

H(t, T )

∫ t

T

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1 [
G(s)H(t, s)ϕ(s)ρ(s)− 1

4

|h(t, s)|2 ϕ(s)

F (s)H(t, s)ρ(s)

]
ds

≥ A(T ),

where A+(s) = max{A(s), 0}, then every solution of the boundary value problem

(E), (B1) is oscillatory in G.

Proof. Assume that the boundary value problem (E), (B1) has a nonoscillatory

solution u(x, t). Without loss of generality, assume that u(x, t) > 0,

(x, t) ∈ Ω × [0,+∞). The case for u(x, t) < 0 can be considered in the same

method. Proceeding as in the proof of Theorem 3.3, we have (12) and (14). Then

for t > T ≥ t0, we get

lim sup
t→+∞

1

H(t, T )

∫ t

T

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1 [
G(s)H(t, s)ϕ(s)ρ(s)− 1

4

|h(t, s)|2 ϕ(s)

F (s)H(t, s)ρ(s)

]
ds

≤ ρ(T )U(T ).

The rest of the proof is similar to the proof in [23] and hence is omitted. �

Remark 3.9. In Theorem 3.8, by choosing ρ(s) = ϕ(s) ≡ 1, we get the following

corollary.

Corollary 3.10. Assume that the conditions of Theorem 3.8 hold, and assume that

ρ(s) = ϕ(s) ≡ 1. If

lim sup
t→+∞

1

H(t, T )

∫ t

T

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1 [
G(s)H(t, s)− 1

4

|h(t, s)|2

F (s)H(t, s)

]
ds ≥ A(T ),
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for every T ≥ t0, where A+(s) = max{A(s), 0}, then every solution of the boundary

value problem (E), (B1) is oscillatory in G.

Remark 3.11. Similar to Corollary 3.7, we can obtain the following corollary from

Corollary 3.10.

Corollary 3.12. Assume that the conditions of Theorem 3.8 hold, and

lim sup
t→+∞

1

(t− t0)n−1

∫ t

t0

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1
(n− 1)2

(t− s)2F (s)
ds < +∞.

If there exists an integer n > 2 and function A(t) ∈ C([0,+∞),R) such that

lim sup
t→+∞

∫ t

t0

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)
F (s)(A+(s))2ds = +∞,

and for every T ≥ t0

lim sup
t→+∞

1

(t− t0)n−1

∫ t

T

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1 [
G(s)(t− s)n−1 − 1

4

(n− 1)2

(t− s)2F (s)

]
ds ≥ A(T ),

where A+(s) = max{A(s), 0}, then every solution of the boundary value problem

(E), (B1) is oscillatory in G.

4. Oscillation of the Problem (E) and (B2)

In this section, we establish sufficient conditions for the oscillation of all solutions

of the problem (E), (B2).

Lemma 4.1. If the functional impulsive differential inequality

Z̃(m)(t) +G(t)Z̃(θ(t)) ≤ 0, t 6= tk

a
(i)
k ≤

∂(i)Z̃(t+k )

∂t(i)

∂(i)Z̃(tk)

∂t(i)

≤ b
(i)
k , k = 1, 2, · · · , i = 0, 1, 2, · · · ,m− 1


(16)

has no eventually positive solution, then every solution of the boundary value problem

defined by (E) and (B2) is oscillatory in G.
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Proof. Assume that there exist a nonoscillatory solution u(x, t) of the boundary

value problem (E), (B2) and u(x, t) > 0. By the hypothesis (H1) and (H3), that

there exists a t1 > t0 > 0 such that τ(t) ≥ t0, σ(t, ξ), ρ(t, ξ) ≥ t0 for (t, ξ) ∈
[t1,+∞)× [a, b] for t ≥ t1, then

u(x, τ(t)) > 0 for (x, t) ∈ Ω× [t1,+∞),

u(x, σ(t, ξ)) > 0 for (x, t, ξ) ∈ Ω× [t1,+∞)× [a, b]

and u(x, ρ(t, ξ)) > 0 for (x, t, ξ) ∈ Ω× [t1,+∞)× [a, b].

For t ≥ t0, t 6= tk, k = 1, 2, · · · , multiplying both sides of equation (E) by 1/|Ω|
and integrating with respect to x over the domain Ω, we obtain

dm

dtm

[
1

|Ω|
∫

Ω
u(x, t)dx+

1

|Ω|
∫

Ω
c(t)u(x, τ(t))dx

]
+

1

|Ω|
∫

Ω

∫ b
a
q(x, t, ξ)f(u(x, σ(t, ξ)))dη(ξ)dx

= a(t)
1

|Ω|
∫

Ω
∆u(x, t)dx− 1

|Ω|
∫

Ω

∫ b
a
b(t, ξ)∆u(x, ρ(t, ξ))dη(ξ)dx.


(17)

By Green’s formula and boundary condition (B2),∫
Ω

∆u(x, t)dx =

∫
∂Ω

∂u

∂γ
dS = −

∫
∂Ω

µ(x, t)u(x, t)dS ≤ 0, (18)

and∫
Ω

∆u(x, ρ(t, ξ))dx =

∫
∂Ω

∂u(x, ρ(t, ξ))

∂γ
dS = −

∫
∂Ω

µ(x, ρ(t, ξ))u(x, ρ(t, ξ))dS ≤ 0

(19)

where dS is surface element on ∂Ω. Also from (H2) and Jensen’s inequality, we have

1

|Ω|

∫
Ω

∫ b

a

q(x, t, ξ)f(u(x, σ(t, ξ)))dη(ξ)dx

≥
∫ b

a

Q(t, ξ)
1

|Ω|

∫
Ω

f(u(x, σ(t, ξ)))dxdη(ξ)

=

∫ b

a

Q(t, ξ) ε
1

|Ω|

∫
Ω

u(x, σ(t, ξ))dxdη(ξ)

≥ ε

∫ b

a

Q(t, ξ)Ṽ (σ(t, ξ))dη(ξ). (20)
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In view of (17)-(20), yield

dm

dtm

[
Ṽ (t) + c(t)Ṽ (τ(t))

]
+ ε

∫ b

a

Q(t, ξ)Ṽ (σ(t, ξ))dη(ξ) ≤ 0. (21)

Set Z̃(t) = Ṽ (t) + c(t)Ṽ (τ(t)). Equation (21), can be written as

Z(m)(t) + ε

∫ b

a

Q(t, ξ)Ṽ (σ(t, ξ))dη(ξ) ≤ 0, t 6= tk. (22)

Rest of the proof is parallel to the Lemma 3.1, and hence the details are omitted.

�

Theorem 4.2. If there exists a function ϕ̃(t) ∈ C1([0,+∞), (0,+∞)) which is

nondecreasing with respect to t, such that∫ +∞

t1

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1 [
ϕ̃(s)G(s)− (ϕ̃′(s))2

4F (s)ϕ̃(s)

]
ds =∞,

then every solution of the boundary value problem (E), (B2) is oscillatory in G.

Theorem 4.3. Assume that there exist functions ϕ̃(t) and

ρ̃(s) ∈ C1([0,+∞), (0,+∞)) such that ϕ̃(t) is nondecreasing. Assume that the

functions there exist two functions H(t, s), h(t, s) ∈ C1(D,R), in which

D = {(t, s)|t ≥ s ≥ t0 > 0}, such that (H7)− (H9) hold. If

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1

Π̃(s)ds =∞,

where

Π̃(s) = G(s)ϕ̃(s)H(t, s)ρ̃(s)− 1

4

|h(t, s)|2 ϕ̃(s)

F (s)H(t, s)ρ̃(s)
,

then every solution of the boundary value problem (E), (B2) is oscillatory in G.

Remark 4.4. In Theorem 4.3, by choosing ρ̃(s) = ϕ̃(s) ≡ 1, we have the following

corollary.

Corollary 4.5. Assume that the conditions (H7)− (H9) hold, and

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1

Γ(s)ds =∞,

then every solution of the boundary value problem (E), (B2) is oscillatory in G.
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Remark 4.6. From Theorem 4.3 and Corollary 4.5, we can attain various oscillatory

criteria by different choices of the weighted function H(t, s). For example, choosing

H(t, s) = (t − s)n−1, t ≥ s ≥ t0, in which n > 2 is an integer, then h(t, s) =

(n− 1)(t− s)(n−3)/2, t ≥ s ≥ t0. From Corollary 4.5, we get

Corollary 4.7. If there exists an integer n > 2 such that

lim sup
t→+∞

1

(t− t0)n−1

∫ t

t0

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1 [
G(s)(t− s)n−1 − 1

4

(n− 1)2

(t− s)2F (s)

]
ds = +∞,

then every solution of the boundary value problem (E), (B2) is oscillatory in G.

Theorem 4.8. Let the functions H(t, s), h(t, s), ϕ̃(s) and ρ̃(s) be as defined in

Theorem 4.3. Additionally, suppose that

0 < inf
s≥t0

{
lim inf
t→+∞

H(t, s)

H(t, t0)

}
≤ +∞,

and

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1
|h(t, s)|2 ϕ̃(s)

F (s)H(t, s)ρ̃(s)
ds < +∞.

If there exists a function Ã(t) ∈ C([t0,+∞),R) such that

lim sup
t→+∞

∫ t

t0

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)
F (s)(Ã+(s))2

ρ̃(s)ϕ̃(s)
ds = +∞,

and for every T ≥ t0

lim sup
t→+∞

1

H(t, T )

∫ t

T

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1 [
G(s)H(t, s)ϕ̃(s)ρ̃(s)− 1

4

|h(t, s)|2 ϕ̃(s)

F (s)H(t, s)ρ̃(s)

]
ds

≥ Ã(T ),

where Ã+(s) = max{Ã(s), 0}, then every solution of the boundary value problem

(E), (B2) is oscillatory in G.

Remark 4.9. In Theorem 4.8, by choosing ρ̃(s) = ϕ̃(s) ≡ 1, we attain the following

corollary.
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Corollary 4.10. Assume that the conditions of Theorem 4.8 hold and assume that

ρ̃(s) = ϕ̃(s) ≡ 1. If

lim sup
t→+∞

1

H(t, T )

∫ t

T

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1 [
G(s)H(t, s)− 1

4

|h(t, s)|2

F (s)H(t, s)

]
ds ≥ Ã(T ),

for every T ≥ t0, then every solution of the boundary value problem (E), (B2) is

oscillatory in G.

Remark 4.11. Similar to Corollary 4.7, we can obtain the following corollary from

Corollary 4.10.

Corollary 4.12. Assume that the conditions of Theorem 4.8 hold, and

lim sup
t→+∞

1

(t− t0)n−1

∫ t

t0

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1
(n− 1)2

(t− s)2F (s)
ds <∞.

If there exists an integer n > 2 and function Ã(t) ∈ C([0,+∞),R) such that

lim sup
t→+∞

∫ t

t0

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)
F (s)(Ã+(s))2ds =∞,

and for every T ≥ t0

lim sup
t→+∞

1

(t− t0)n−1

∫ t

T

∏
t0≤tk<s

(
b

(m−1)
k

a
(0)
k

)−1 [
G(s)(t− s)n−1 − 1

4

(n− 1)2

(t− s)2F (s)

]
ds ≥ Ã(T ),

then every solution of the boundary value problem (E), (B2) is oscillatory in G.

5. Examples

In this part, we present couple of examples to point up our results established in

Section 3 and Section 4.

Example 5.1. Consider the following equation

∂6

∂t6

(
u(x, t) +

1

5
u(x, t− π)

)
+

6

5

∫ −π/4
−π/2 u(x, t+ 2ξ)dξ =

4

5
∆u(x, t)− 6

5

∫ −π/4
−π/2 ∆u(x, t+ 2ξ)dξ, t > 1, t 6= tk, k = 1, 2, · · · , u(x, (tk)

+) =
k + 1

k
u(x, tk),

∂(i)

∂t(i)
u(x, (tk)

+) =
∂(i)

∂t(i)
u(x, tk), i = 1, 2, 3, 4, 5, k = 1, 2, · · ·


(23)
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for (x, t) ∈ (0, π)× [0,+∞), with the boundary condition

u(0, t) = u(π, t) = 0, t 6= tk. (24)

Here Ω = (0, π), m = 6, a
(0)
k = b

(0)
k =

k + 1

k
, a

(i)
k = b

(i)
k = 1, i = 1, 2, 3, 4, 5, c(t) =

1

5
,

τ(t) = t− π, Q(t, ξ) =
6

5
, f(u) = u, σ(t, ξ) = ρ(t, ξ) = t+ 2ξ, a(t) =

4

5
, b(t, ξ) =

6

5
,

η(ξ) = ξ, θ(t) = t, θ′(t) = 1, ε = 1. Since t0 = 1, tk = 2k, g0 =
4

5
, G(s) =

6π

25
,

F (s) = s4. Then from the hypotheses (H1)− (H6) hold, moreover

lim
t→+∞

∫ t

t0

∏
t0≤tk<s

a
(0)
k

b
(i)
k

ds =

∫ +∞

1

∏
1<tk<s

k

k + 1
ds

=

∫ t1

1

∏
1<tk<s

k

k + 1
ds+

∫ t2

t+1

∏
1<tk<s

k

k + 1
ds+

∫ t3

t+2

∏
1<tk<s

k

k + 1
ds+ · · ·

= 1 +
1

2
× 2 +

1

2
× 2

3
× 22 +

1

2
× 2

3
× 3

4
× 23 + · · ·

=
+∞∑
n=0

2n

n+ 1
= +∞.

Thus, the condition (3.15) reads,

lim sup
t→+∞

1

(t− 1)5

{∫ t

1

∏
1<tk<s

k

k + 1

[
6π

25
(t− s)5 − 25

4s4(t− s)2

]
ds

}
= +∞.

Therefore all the conditions of the Corollary 3.7 are satisfied. Therefore, every

solution of equation (23)-(24) is oscillatory in G. In fact u(x, t) = sinx cos t is such

a solution.
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Example 5.2. Consider the following equation of the form

∂4

∂t4

(
u(x, t) +

1

2(t+ 1)
u(x, t− 3π)

)
+

1

2

∫ 0

−π u(x, t+ ξ)dξ

=

(
12

(t+ 1)5
− 6

(t+ 1)3
+

1

2(t+ 1)
− 1

)
∆u(x, t)

+

(
1

2

(
1− 12

(t+ 1)4
+

2

(t+ 1)2

))∫ 0

−π ∆u(x, t+ ξ)dξ, t > 1, t 6= tk,

u(x, (tk)
+) =

k + 1

k
u(x, tk),

∂(i)

∂t(i)
u(x, (tk)

+) =
∂(i)

∂t(i)
u(x, tk), i = 1, 2, 3, k = 1, 2, · · ·



(25)

for (x, t) ∈ (0, π)× [0,+∞), with the boundary condition

ux(0, t) = ux(π, t) = 0, t 6= tk. (26)

Here Ω = (0, π), m = 4, µ(x, t) = 1, a(0)
k = b

(0)
k =

k + 1

k
, a

(i)
k = b

(i)
k = 1, i = 1, 2, 3,

c(t) =
1

2(t+ 1)
, τ(t) = t − 3π, Q(t, ξ) =

1

2
, f(u) = u, σ(t, ξ) = ρ(t, ξ) = t + ξ,

a(t) =
12

(t+ 1)5
− 6

(t+ 1)3
+

1

2(t+ 1)
− 1, b(t, ξ) =

1

2

(
1− 12

(t+ 1)4
+

2

(t+ 1)2

)
,

η(ξ) = ξ, θ(t) = t2, θ′(t) = 2t, ε = 1. Since t0 = 1, tk = 2k, g0 = 1 − 1

2(t+ ξ + 1)
,

G(s) =
π

2

(
1− 1

2(t+ ξ + 1)

)
, F (s) = 2s5. Then hypotheses (H1) − (H6) hold.

Thus,

lim sup
t→+∞

1

(t− 1)3

{∫ t

1

∏
1<tk<s

k

k + 1

[
π

2

(
1− 1

2(s+ ξ + 1)

)
(t− s)3 − 9

8s5(t− s)2

]
ds

}
= +∞.

Therefore all the conditions of the Corollary 4.7 are satisfied. Therefore, every

solution of equation (25)-(26) is oscillatory in G. In fact u(x, t) = cos x sin t is such

a solution.
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