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1 Introduction 
 Oxide single crystals are conventionally grown by the 
Czochralski (Cz) method primarily characterized by 
hydrodynamics of the melt which is inextricably coupled 
to transport phenomena in the melt. The Cz melt is in fact a 
good example of situation in which the fluid motion is 
brought about by different coexisting mechanisms, that is, 
heating from side (the crucible wall) yields a convective 
flow of the Hadley type, whereas cooling from above (the 
melt/gas interface and the crystal/melt boundary) may 
lead a Rayleigh-Benard type convection in the system [1]. 
Motions relevant to the Cz melt can be classified by the 
principle of driving forces into the following main groups: 
(a) gravitational (natural convection), (b) mechanical 
(forced convection), and (c) surface-tension (Marangoni 

convection). These different kinds of the melt motion 
determine the structure of the flow, the heat and mass 
transport in the fluid, the crystal-melt interface shape, and 
consequently the quality of the growing crystal. 
 In a Cz melt model, the ratio between the buoyancy and 
the rotationally-driven forces, denoted by Gr/Re2, is 
generally assumed as the non-dimensional parameter 
governing the convective interactions, and the flow is 
supposed to become unstable whenever its value 
approaches to acritical one around the unity. It has been 
shown that refractory oxides may exhibit an abrupt 
change in the interface shape, from a convex-to-melt phase 
boundary to a flat or even concave one, during the growth 
process [2-6]. This sudden and uncontrollable change is 
usually assigned to a critical value of the ratio Gr/Re2 in 
the melt. However, the manner in which the crystal-melt 
interface is represented is a central feature of bulk crystal 
growth models in which thephase change problems with 
convection play a significant role. A self-consistent growth 
model requires that the interface geometry be computed 
as part of the solution to the transport problem, and the 
main challenge is the presence of a moving phase 
boundary involving a strong coupling of mass and heat 
transfer. From an algorithmic point of view, two methods 
are primarily employed for solving phase change problems 
with convection and computing the position of the crystal-
melt interface. The first one (front-tracking methods) is 
based on a multi-domain approach anddefines a discrete 
moving surface to separate the interface between crystal 
and melt. The second category (diffuse-interface methods) 
is based on a single-domain approach where a system of 
momentum and energy equations is solved in the entire 
physical domain, andtreats the interface as a region 
(mushy zone) of finite thicknessacross which physical 
properties vary rapidly but continuously from one bulk 
value to the other [7]. In contrast to the front-tracking 
methods, such as the widely used isotherm method, in a 
single-domain approach the thickness of the so-called 
mushy zone is very large compared to the width of a phase 
boundary of one or two layers of computational cells [8]. 
The main advantage of this approach is that the interface is 
not explicitly computed and the energy balance condition 
is automatically satisfied at the crystal-melt 
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interface.Voller and Prakash [9] have argued that when the 
material is not a pure substance, the phase transition 
occurs over a temperature range around the melting point. 
That is, the evolution of latent heat has a functional 
relationship with temperature as opposed to the step 
change associated with an isothermal phase change. In 
such cases, the phase transition   takes place through the 
so-called mushy region, in which the fluid flowplays an 
important role in the final solidified microstructure.This 
numerical approach to solve the convection-diffusion 
controlled mushy region phase change problems is called 
the enthalpy-porosity model which includes latent heat 
effects as a source term, and comprises a technique to 
ensure that the velocity field vanishes in the solid phase 
[10,11]. In the present study,the enthalpy-porosity model 
was used to describe the phase change problem involving 
convection and radiation in a Czoxide crystal growth 
configuration. In thisinvestigation, the finite volume 
approximation (FVM) is applied to discrete the governing 
equations on stationary grid mesh system incorporating 
enthalpy-porosity model to simulate the effect of 
rotationally-driven forces on the mushy region structure. 
Correlation between hydrodynamic stability of the flow 
and the mushy-zone structure is studied.We intended to 
show that the mushy-zone morphology would be 
considerably deformed at a critical value of the ratio 
between the buoyancy- and rotationally-driven forces. 
 
2 Model description    
2.1 Geometry, thermal and radiative properties 
 The schematic in Fig. 1 illustrate the geometry of the Cz 
growth configuration adopted in the present numerical 
simulation, wherethe crystal radius at the constant-
diameter stage of the growth is rx= 30 mm.The crystal to 
crucible radii ratio (rx/rc) is 0.5, and the aspect ratio 
AR=hc/rc is 2.0, where hc =120 mm is the height of the 
crucible side wall. The height of the tri-junction point J, is 
kept at 125mm, while the height of the melt free surface at 
the crucible wall is hl= 120 mm. The crucible side wall is at 
a constant temperature Tc=Tmp+∆Tmax, where       
∆Tmax=67 K is the applied temperature difference 
between the crucible wall and the melting point of the 
material.The crucible wall is assumed to be an opaque and 
gray surface diffusely emitting and reflecting but not 
absorbing the thermal radiation. The crucible bottom is 
thermally insulated, and its surface has the same radiation 
transfer properties (ε=0.5) as the crucible side wall. Both 
the melt and the crystal have the same optical thickness, 
and they absorb and emit but not scatter radiation. 
Theoptical properties of the material (such as refractive 
index, n=1.8 and absorption coefficient, a=258 m-1[6]) are 
independent of temperature and wavelength. Throughout 
this work, the melt-gas interface is assumed to be a 
semitransparent diffuse gray surface, which is slightly 
curved to form a meniscus configuration at the crystal 
periphery.  

 
Fig. 1.  Geometry of the Cz growth model with a 
hypothetical mushy region between the crystal and melt. 
Dashed horizontal line, Lr (5 mm below the melt free 
surface) and vertical line Lz , crossing the point            
M(r,z)= (rx/2, 125mm ) are described. The point J is the                 
tri-junction point, hm is the height of the melt meniscus 
region, and ∆h is the convex to melt interface depth. 
 
With the refractive index of the melt (and the crystal), the 
Spuckler-Siegel[12] approximation was used to estimate 
the transmissivites (τext=0.85, and τin=0.23) on both 
sides of the melt free surface. The emissivity, ε at the 
crystal surface is assumed to be 0.3. Energy is transmitted 
through the free surface of the melt (and the crystal) to the 
ambient walls (ε=0.7) at Ta≅1650K. The ambient gas is 
assumed to be totally transparent. The crucible is at rest, 
and the no-slip condition is applied to all physical 
boundaries of the melt except the melt-gas interface on 
which thermocapillary forces are taken into account. The 
crystal rotates uniformly around the symmetry axis. The 
crystal rotation rate, 0.5<Ω(rad/s)<3.0, is the only variable 
external parameter in the present model. In contrast to the 
front-tracking method where the interface shape coincides 
with the melting point isothermTmp=2023K, the crystal-
melt mushy zone is treated as a region of finite thickness 
across which the phase change occurs. 
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Table 1.  Thermophysical properties including optical data employed  in calculation. The subscribes l, x and c denote 
melt, crystal and crucible, respectively. 
 

 
2.2 Dimensionless parameters  
 The thermophysical properties of the material 
(gadolinium gallium garnet) employed for the present 
calculations, and the dimensionless parameters which 
describe the convective flow in the melt are listed in Table 
1. The oxide (Gd3Ga5O12) melt is characterized by the 
Prandtl number Pr≅4.69, the Grashofnumber 
Gr=1.141×103∆Tmax , the Reynolds number 
Re=1.271×102Ω, and the Marangoni number                     
Ma= 2.742×102∆Tmax, where Ω(rad/s) is the crystal 
rotation rate and ∆Tmax=67K is the driving temperature 
difference which ensures the growth ofcrystal at the tri-
junction point, J(r,z)=(30mm, z=125mm). For the present 
mixed convection problem, the ratio between buoyancy 
and the rotationally-driven forces is given by 
Gr/Re2=4.732/Ω2, and the critical Reynolds number is 
approximated by Re*≅ Gr1/2, at which (Re*≅276.5) the 
intensity of forced convection flow is comparable to that of 
the buoyancy-driven one. In a Cz melt model, and 
particularly in the column of the flow beneath the phase 
boundary, both density variations (thermal stratification) 
and the crystal rotation rate are intrinsic to the 
hydrodynamic stability of flow. As a measure of the 
relative importance of thermal stratification and the 
rotationally-driven effects, the Burger number, Bu is used 
to predict the breakdown of axisymmetry with the onset of 
the geostrophic instability if the condition Bu < Bu*= 0.58 
is fulfilled. In the present Cz model (AR=2.0), the Burger 
number can be expressed by Bu=(N/Ω)2, where 
N=(gβ∂T/∂z)1/2 is the buoyancy frequency with which an 
adiabatically displaced fluid particle will oscillate about its 
equilibrium position [1]. The condition (Bu<Bu*) is 
satisfied whenever the crystal rotation rate exceeds a 
critical value at which the convective flow is characterized 
by Gr/Re2≤0.89.The most direct measure of the relative 
importance of the density and velocity gradients is 
provided by the gradient form of the Richardson number, 

Rig, which can be expressed as  
Rig=4Bu/(RoT)2[13],where RoT is the thermal Rossby 
number.Fein and Pfeffer [13]have reported that, for all the 
experimental cases studied (Pr<1, and Pr>1), Rig increases 
as the rotation rate is increasing. 
 
2.3 Mathematical model 
 Assuming that the Cz/oxide melt is Newtonian and 
incompressible, the enthalpy-porosity governing 
equations [9-11] can be expressed as 
 Conservation of momentum: 

2. ( ).............................(1)
u

u u p u Au S H
t


 


       



 Conservation of mass: 

                                      . 0.............................(2)u   

Conservation of energy: 

   2. . 0.............................(3)R

H
u H k T q

t


     


 

where u(x,t)is the flow velocity vector at any point x(r,z) 
and at any time t, p is the pressure, H is the enthalpy, q_R is 
the radiation heat flux through the melt.A is defined so 
that the momentum equations are forced to mimic the 
Carman-Kozeny equation [10] 

                     
2

3

(1 )
.............................(4)P

C

u





 
   

which suggests the following form for the function A in the 
momentum equation, 

                           
2

3

(1 )
.............................(5)

( )

C
A

b





 



 

where the factor b is a small constantvalueintroduced to 
avoid division by zero, C is a constant accounting for the 
mushy-zone morphology, and λ is the porosity which takes 
the values, λ=1in the liquid phase, λ=0 in the solid phase, 
and 0<λ<1 in the mushy region. The equation (5) implies 
that, A vanishes in the fluid and has no influence in the 
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liquid phase. In the solid phase, however, A takes a large 
value and forces the velocity field to be vanished. 
Assuming the Boussinesq approximation to be valid, that is, 
density is constant in all terms except a gravity source 
term, that buoyancy source term can be expressed as 

                     
( )

( ) .............................(6)
ref

p

g H H
S H

C

 
  

where g=(0,0,-g)is the accelerationvector due to gravity,β 
is the thermal expansion coefficient, c_p is the specific heat 
of the material, H_ref is a reference value for the enthalpy, 
and the enthalpy of the material (the total heat constant) is 
given by 

( ).............................(7)f p mp p mpH H C T C T T      

where  fH  is the latent heat  of fusion. To estimate the 

radiative heat flux, q_Rin Eq.(3), we have to solve the 
radiative transfer equation. In the present study, the Sn-
type (S4) discrete ordinates (DO) method [14], based on a 
discrete representation of the angular dependence of the 
radiation intensity, was used. The balance of energy 
passing in a specified direction Ω through a small 
differential volume in an axisymmetric system is given by 
the following equation when the scattering is ignored: 

( ) ( )1
.............................(4)m m m m m

m m m

rI I I
aI aI

r r r z

 




    
           

 

where μ_m,η_m and ζ_m are the direction cosines and I_m 
is the intensity of radiation for the discrete direction Ω_m. 
ϕ is the angle of revolution around the z-axis, and I_b is the 
intensity of blackbody radiation at the temperature of 
medium. The absorption coefficient of the melt (and the 
crystal),  is denoted by a. The radiative heat flux, q_Rcan be 
expressed as follows: 

                    .............................(5)R m m m

m

q I   

where ω_m is angular quadrature weight which sums to 
the surface area of unit sphere, and the index, m is used to 
sum over all directions. 
 
We applied the finite volume technique (FVM) to compute 
steady and axisymmetric solutions to the fully coupled 
equationsgoverning the convective flow involving 
solidification in the Cz growth system represented in Fig. 
(1). The SIMPLE algorithm was used to couple velocities 
and pressure on staggered grids, and second order upwind 
method was used for discretization of momentum and 
energy equations. The equations are integrated over each 
control volume (CV) and resulting system of algebraic 
equations was solved iteratively until convergence was 
reached. Non-uniform finite volume mesh structure used 
to perform the calculations in this work, consists of 36446 
mixed (quadrilateral and triangular) cells. According to the 
investigations of Voller and Prakash [9], the constants b 
andC in the equations (4) and (5) are set at 10-3 and 
1.6×105, respectively. The numerical results in the next 
section implies that the chosen value of C is small enough 
to allow for significant flow in the mushy region whereas 
the limiting value of the function A, that is, A=-C/λis large 

enough to suppress the flow velocity field in the solid 
phase. 
 
3 Results and Discussion 
 Steady-state simulations of the convective flow pattern 
and temperature field are represented in Fig.2(a,b,c).These 
figures are relevant to three different crystal rotation rates, 
i.e., Ω= 1.5, 2.0, and 2.5rad/s corresponding to 
Gr/Re2=2.10, 1.18, and 0.75, respectively.The general 
feature of the fluid motion is described as following. The 
buoyancy-driven hot flow ascends along the crucible side 
wall and then, accompanied by the thermocapillary flow, 
travels along the melt free surface towards the crystal rim. 
Due to the convection and radiation at the melt free 
surface, the fluid is being cooled down along the path,and 
this creates a stream of cold fluid which descends along 
the melt centerline towards the crucible bottom.Due to the 
optical properties of the melt, the flow does not exhibit 
undulating structure observed in high Prandtl number 
opaque melts [3].However, owing to the relatively large 
optical thickness of the fluid, the isotherms are more 
squeezed at the corner, and the vortex centerof thermal 
convection flow is located at a position lower than the melt 
middle. When the rotation rate is smaller than ~2.3 rad/s, 
the flow is essentially a buoyancy-driven one with a large, 
unicellular counter-clockwise circulation. Increasing in the 
rotation rate to ~2.5 rad/s, small rotationally-driven, 
clockwise cells appear in the vicinity of the crystallization 
front and nearby the crucible bottom.  

 
Fig.2.Contour plots of isotherms (left side) and stream 
function (right side) in the semitransparent melt (al x 
rc=15.48) for different rotation rates: (a) Ω=1.5, (b) Ω=2.0, 
and (c) Ω=2.5 rad/s.  
 
As shown in Fig.2(a,b,c), in the cases with (Gr/Re2)>1.18, 
the flow pattern is associated by a  convex-to-melt 
interface, which tends to be nearly flat when the rotation 
rate is increased to 2.5 rad/s, corresponding to 
Gr/Re2=0.75. In Fig.2(a), the isotherms close to the phase 
boundary are regular and more density of heat flux lines 
implies that the heat transfer is intensified along the 
interface. In this case the isotherms T(1)=2056.5K and 
T(2)=2060K both are found to be reached the crucible 
bottom. Fig.2(b) shows that increasing the rotation rate 

a b c 
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from 1.5 to 2.0, the regular shape of the isotherms in the 
vicinity of the interface is changed at around the interface 
mid-point, r=15mm, and more density of lines are located 
between meniscus region of the melt and the convex-to-
melt interface mid-point. In this case, the isotherm T(1) 
turns toward the axis while T(2) reaches to the crucible 
bottom. Further increase in the rotation rate (from 2.0 to 
2.5 rad/s) results in a nearly flat interface. As shown in 
Fig.2(c),the isotherms are more squeezed in the meniscus 
region, and they are strongly deformed along the rest of 
the interface.In this situation both of the isotherms T(1) 
and T(2) are found to be turned and reached to the 
symmetry axis. These results are consistent with the well-
known [15] effect of the melt meniscus at the crystal 
periphery which allows for radial heat transfer (both 
convective and radiative)from the melt to surrounding 
near the crystallization front and reduces the net radial 
heat transfer from the melt to the interface.This effect 
leads to decrease in the convexity of the interface. 

 
Fig.3. Effect of the crystal rotation rate on the mushy-zone 
morphology. The ratio between the axial and radial 
temperature gradients decreases with increasing rotation 
rate.  
 
The effect of rotationally-driven forces on the morphology 
of mushy-zone is represented in Fig. 3. Note that the ratio 
between the axial and horizontal temperature gradients, 
gz/gr decreases with increasing the crystal rotation rate, 
and the mushy region was found to be strongly deformed 
when (gz/gr) beneath the phase boundary decreased to the 
values smaller than unity(i.e., in the cases with Ω>2.3 
rad/s). Fig. 3 shows that the convex-to-melt interface at 
Ω=1.5 rad/s is changed to form a “gull-wing” geometry at 
Ω=2.0 rad/s.The effect of rotation rate on the radial 
velocity profile along the horizontal line, Lr is illustrated in 
Fig. 4. The line Lr(5mm below the melt free surface) is 
crossing the mushy region (0<r(mm)<30). Fig. 4 shows 
that the convective flow protrudes into the zone, and the 
velocity profile was found to be changed for the cases  
Ω>2.0 rad/s. In other words, when  Ω<2.0rad/s, the fluid 
motion within the mushy-zone is dominated by the 
buoyancy and thermocapillary forces (ur<0). The sign of 
the velocity component, which was altered at the rotation 

rates even slightly greater than 2.0 rad/s (e.g., Ω=2.3 rad/s, 
corresponding to Gr/Re2=0.89), implies that the forced 
convection flow plays a significant role in deformation of 
the mushy-zone morphology. Correspondingly, the effect 
of rotation rate on the temperature profile along the same 
horizontal line (Lr) is depicted in Fig. 5. It is shown that the 
crystallization front (0<r(mm)<30) tends to be flat at 
Ω=2.5 rad/s, and this can be inferred that the interface–
inversion process occurs at Ω=2.8-3.0 rad/s. It is worthy to 
note (but not shown here) that, the flow field found to be 
dominated by the rotationally-driven forces when the 
rotation rate increased from 2.5 to 2.8 rad/s at which a 
large cold plume appearsbeneath the mushy-zone and, 
descending along the symmetry axis toward the crucible 
bottom, tends to break away from the axial position and 
the flow direction.The effect of rotation rate on the 
interface depth (Δh), the thickness of the mushy region 
(ΔLz) at r=rx/2, and the averaged axial and radial 
temperature gradients in the melt beneath the interface is 
illustrated in Fig. 6. It is shown that the grincreases, and 
gzdecreases first (0.5<Ω(rad/s)<2.0) slowly and then 
(Ω>2.0 rad/s) more rapidly with increasing rotation rate. 
The depth of the crystallization front was found to be 
sharply decreased for the cases Ω>2.0 rad/s (Re>254.24 
and Gr/Re2<1.18) which corresponds to (gz/gr)≤1.0. The 
morphology of mushy-zone depends on the rotationally-
driven forces which affects gz/grin the Cz melt. As expected 
[13], Fig. 7 shows that the gradient Richardson 
number(Rig) increases and the thermal Rossby number 
(RoT) decreases as the forced convection flow, represented 
by the Reynods number (Re), is intensifying. It is shown 
that, increasing the rotation rate from 2.0 to 2.3 rad/s the 
governing parameter of mixed convection (Gr/Re2) 
decreases from 1.18 to a value lower than unity (i.e., 0.89). 
Consistently,RoTdecreases from 1.59 to 0.81in the case 
with Ω=2.3 rad/s at which the Burger number is equal to 
its critical value (Bu*=0.58) [1,13], and the morphology of 
the mushy region was found to be clearly modified. 

 
Fig. 4.Effect of rotation rate on the radial velocity profile 
along the horizontal line Lr (5mm below the melt free 
surface), crossing the mushy region. The mixed convection 
flow penetrates into the mushy zone, and for the cases   
Ω>2.0 rad/s, the rotationally-driven flow protrudes in the 
crystal-melt region and affects the morphology of the zone.     
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Fig. 5. Effect of rotation rate on the temperature profile 
along the horizontal line,Lr (5mm below the melt free 
surface) crossing the mushy region.  

 

Fig.  6.Variation of the interface depth (Δh), the thickness 
of mushy zone (ΔLz) at r=15mm, and the temperature 
gradients ΔT/Δz and ΔT/Δr with the crystal rotation rate.   
 

 
 
Fig. 7. Variation of the dimensionless parameters 
characterizing the hydrodynamic stability of the flow, each 
as a function the rotationally-driven flow intensity. The 
governing parameter of the mixed convection flow is given 
by Gr/Re2, Rig=N2/(∂ur/∂z)2 is the gradient Richardson 
number, Bu=[(N/2Ω)(hc/rc)]2 is the Burger’s number, 
where N is the buoyancy frequency. 

4 Conclusions 

 The enthalpy-porosity method developed by Voller and 
Prakash [9,10] was used to solve the phase-change 
problem involving mixed convection and radiation in a 
Czochralski crystal growth model. A finite volume (FVM) 
method was applied to compute two-dimensional and 
axisymmetric solutions to the fully coupled equations 
governing the melt hydrodynamic and heat transfer in the 
model, and discrete ordinates method (DOM) was used to 
account for the influence of internal radiative heat transfer 
on the flow field and the temperature distribution in the 
material. The effect of rotationally-driven forces on the 
structure of the mushy region was studied. It was shown 
that the morphology of mushy-zone depends on the ratio 
between the axial and radial temperature gradients (gz/gr), 
which decreases as the crystal rotation rate increased.The 
mushy-zone structure was found to be correlated with the 
hydrodynamic stability of the flow. 
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