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Abstract. In this paper, we introduce second order difference operator with

polynomial factorial and its inverse by which we obtain advanced Fibonacci

sequence and its sum. Some theorems and interesting results on the sum of the

terms of second order Fibonacci sequence are derived. Suitable examples are

provided to illustrate our results and verified by MATLAB.
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1. Introduction

In 1984, Jerzy Popenda [5] introduced a particular type of difference

operator on u(k) as ∆αu(k) = u(k + 1) − αu(k). In 1989, Miller and Rose [8]

introduced the discrete analogue of the Riemann-Liouville fractional derivative

and its inverse ∆−ν
h f(t) ( [1, 4]). The sum of mth partial sums of products of

higher powers of arithmetic and geometric progressions are derived in [9] by

replacing h by `, ν by m and f(t) by u(k) in ∆−ν
h f(t).

In 2011, M.Maria Susai Manuel, et.al, [7] extended the operator ∆α to

generalized α−difference operator as ∆
α(`)

v(k) = v(k + `) − αv(k) for the real

valued function v(k). In 2014, G.Britto Antony Xavier, et.al, [2] introduced
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q−difference operator as ∆qv(k) = v(qk) − v(k), q ∈ (0,∞) and obtained finite

series solution to the corresponding generalized q−difference equation

∆qv(k) = u(k). In this paper, we introduce second order difference operator by

which we obtain second order polynomial factorial Fibonacci sequence and its

sum. suitable examples verified by MATLAB are provided.

2. Basic Definitions And Examples

Fibonacci and Lucas numbers cover a wide range of interest in modern

mathematics as they appear in the comprehensive works of Koshy [6] and

Vajda [10]. The k−Fibonacci sequence introduced by Falcon and Plaza [3]

depends only on one integer parameter k and is defined as

Fk,0 = 0, Fk,1 = 1 and Fk,n+1 = kFk,n + Fk,n−1, where n ≥ 1, k ≥ 1.

In particular, if k = 2, the Pell sequence is obtained as

P0 = 0, P1 = 1 and Pn+1 = 2Pn + Pn−1 for n ≥ 1.

Here we introduce second order difference operator with polynomial

factorial ∆
α(k)

v(k) = v(k) − α1k
(p)v(k − 1) − α2k

(q)v(k − 2), where

α(k) =
(
α1k

(p), α1k
(q)
)

which generates α(k)-Fibonacci sequence and its sum.

Definition 2.1. For k ∈ [0,∞), α(k)-Fibonacci sequence is defined as

F0 = 1, F1 = α1k
(p), Fn = α1[k−(n−1)](p)Fn−1+α2[k−(n−2)](q)Fn−2, n ≥ 2 (1)

Example 2.2. (i) Taking k = 3,α1 = 2, α2 = 3, p = 2 and q = 3 in (1), we get a

Fibonacci sequence {1, 12, 66, · · · }.

(ii) When k = 12,α1 = 2.22, α2 = 0.333, p = 3 and q = 2 in (1), we have a

Fibonacci sequence {1, 2930.40, 6440477.08, 10294565898.83, · · · }.

Similarly, one can obtain Fibonacci sequences corresponding to each pair

(α1k
(p), α2k

(q)) ∈ R2.

Definition 2.3. A second order difference operator with polynomial factorial on

v(k), denoted as ∆
α(k)

v(k), where α(k) =
(
α1k

(p), α1k
(q)
)
, is defined as

∆
α(k)

v(k) = v(k)− α1k
(p)v(k − 1)− α2k

(q)v(k − 2), k ∈ [0,∞), (2)

and its inverse is defined as below;
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if ∆
α(k)

v(k) = u(k), then we write v(k) =
−1

∆
α(k)

u(k). (3)

Lemma 2.4. Let v(k) be a functions of k ∈ (−∞,∞). Then we obtained

−1

∆
α(k)

ask
[
1− α1k

(p)

a
− α2k

(q)

a2s
]

= ask. (4)

Proof. Taking u(k) = ask
[
1− α1k

(p)

as
− α2k

(q)

a2s
]

in (2), we obtained

∆
α(k)

ask = ask
[
1− α1k

(p)

as
− α2k

(q)

a2s
]
. Now (4) follows from (3). �

Corollary 2.5. If α1 = 1 = α2 in lemma 2.4, then we obtain

−1

∆
µ
ask
[
1− k(p)

as
− k(q)

a2s
]

= ask. (5)

Proof. Taking u(k) = ask
[
1− k(p)

as
− k(q)

a2s
]

in (2), we have

∆
µ
ask = ask

[
1− k(p)

as
− k(q)

a2s
]
. Now (5) follows from (3). �

Lemma 2.6. Let e−sk be a function of k ∈ (−∞,∞). Then we have

−1

∆
α(k)

e−sk
[
1− α1k

(p)es − α2k
(q)e2s

]
= e−sk. (6)

Proof. The proof follows by assuming a = e−1 in (4). �

Corollary 2.7. Let e−sk be a function of k ∈ (−∞,∞), then we obtained

−1

∆
µ
e−sk

[
1− k(p)es − k(q)e2s

]
= e−sk. (7)

Proof. The proof follows by taking α1 = 1 = α2 in lemma 2.6. �

3. α(k)-Fibonacci Sequence And its Sum

In this section, we derive sum of the value of α(k)-Fibonacci Sequence by

inverse of α(k) difference operator.

Theorem 3.1. If v(k) =
−1

∆
α(k)

u(k), F0 = 1, F1 = α1k
(p) and

Fn+1 = α1(k − n)(r)Fn + α2(k − (n− 1))(s)Fn−1, for i = 0, 1, 2, ... then we have

v(k)− Fn+1v(k − (n+ 1))− α2(k − n)(q)Fnv(k − (n+ 2)) =
n∑
i=0

Fiu(k − i). (8)
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Proof. From (2) and (3), we arrive

v(k) = u(k) + α1k
(p)v(k − 1) + α2k

(q)v(k − 2). (9)

Replacing k by k−1 and then substituting the value of v(k−1) in (9), we get v(k) =

u(k)+α1k
(p)
[
u(k−1)+α1(k−1)(r)v(k−2)+α2(k−1)(s)v(k−3)

]
+α2k

(p)v(k−3)

which gives

v(k) = F0u(k) + F1u(k − 1) + F2v(k − 2) + α2(k − 1)(s)F1v(k − 3), (10)

where F0, F1 and F2 are given in (1).

Replacing k by k − 2 in (9) and then substituting v(k − 2) in (10), we obtain

v(k) = F0u(k) +F1u(k−1) +F2u(k−2) +F3v(k−3) +α2(k−2)(s)F2v(k−4),

where F3 is given in (1).

Repeating this process again and again, we get (8). �

Corollary 3.2. If
−1

∆
µ
u(k) = v(k), µ = (k(p), k(q)), F0 = 1, F1 = k(p) and

Fn+1 = (k − n)(r)Fn + (k − (n− 1))(s)Fn−1, for i = 0, 1, 2, ... then

v(k)− Fn+1v(k − (n+ 1))− (k − n)(q)Fnv(k − (n+ 2)) =
n∑
i=0

F
i
u(k − i). (11)

Proof. The proof follows by taking α1 = 1 = α2 in Theorem 3.1. �

Corollary 3.3. If v(k) is a closed form solution of the second order difference

equation with polynomial factorial ∆
α(k)

v(k) = ask
[
1 − α1k(p)

as
− α2k(q)

a2s

]
, then we

obtain ask − Fn+1a
s(k−(n+1)) − α2(k − n)(q)Fna

s(k−(n+2))

=
n∑
i=0

Fia
s(k−i)[1− α1(k − i)(p)

as
− α2(k − i)(q)

a2s
]
. (12)

Proof. The proof follows by choosing v(k) = ask in (8) and using (4). �

The following example is an verification of (12).

Example 3.4. Taking k = 3, n = 2, a = 2, α1 = 2, α2 = 3, s = 3, p = 2 and q = 3

in (12), we get 29 − F32
0 − 3F22

−113 =
2∑
i=0

Fia
(3−i)[1 − 2(3−i)(2)

23
− 3(3−i)(3)

26

]
= 512,

where F0 = 1, F1 = 12, F2 = 66, F3 = 0.
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MATLAB coding for the verification of Example 3.4

syms k; k = 3; syms n;n = 2; syms p; p = 2; syms q; q = 3;

syms s; s = 3; syms a1; a1 = 2; syms a2; a2 = 3; syms a; a = 2;

format bank

f1 = k ∗ (k − 1)

f2 = f1 ∗ (k − 1) ∗ (k − 2) + k ∗ (k − 1) ∗ (k − 2)

f3 = f2 ∗ (k − 2) ∗ (k − 3) + f1 ∗ (k − 1) ∗ (k − 2) ∗ (k − 3)

s1 = â(s ∗ k)

s2 = f3 ∗ â(s ∗ (k − 3))

s3 = f2 ∗ (k − 2) ∗ (k − 3) ∗ (k − 4) ∗ â(s ∗ (k − 4))

LHS = s1− s2− s3
u0 = â(s ∗ k)− k ∗ (k − 1) ∗ â(s ∗ (k − 1))− k ∗ (k − 1) ∗ (k − 2) ∗ â(s ∗ (k − 2))

u1 = â(s∗(k−1))−(k−1)∗(k−2)∗â(s∗(k−2))−(k−1)∗(k−2)∗(k−3)∗â(s∗(k−3))

u2 = â(s∗(k−2))−(k−2)∗(k−3)∗â(s∗(k−3))−(k−2)∗(k−3)∗(k−4)∗â(s∗(k−4))

RHS = u0 + f1 ∗ u1 + f2 ∗ u2

Corollary 3.5. Let e−sk be a function of k ∈ (−∞,∞). Then we have

e−sk − Fn+1e
−s(k−(n+1)) − α2(k − n)(q)Fne

−s(k−(n+2))

=
n∑
i=0

Fie
−s(k−i)[1− α1(k − i)(p)es − α2(k − i)(q)e2s

]
. (13)

Proof. Taking v(k) = e−sk and applying (6) in (8), we get (13). �

Example 3.6. Taking k = 2.88, n = 3, s = 3, α1 = 0.7, α2 = 0.5, p = 2 and

q = 2 in (??), then we obtain

e−8.64 − F4e
3.36 − (0.5)(−0.12)(2)F3e

6.36 =
3∑
i=0

Fie
−3(2.88−i)[1− (0.7)(2.88− i)(2)e3−

(0.5)(2.88− i)(2)e6
]

= −97.43,

where F0 = 1, F1 = 3.79, F2 = 7.10, F3 = 2.61 and F4 = −0.13.

Theorem 3.7. Let t ∈ N(0) . Then a closed form solution of the second order

difference equation with polynomial factorial

v(k)− α1k
(p)v(k − 1)− α2k

(q)v(k − 2) =
[
kt − α1k

(p)(k − 1)t − α2k
(q)(k − 2)t

]
is

−1

∆
α(k)

[
kt − α1k

(p)(k − 1)t − α2k
(q)(k − 2)t

]
= kt (14)

Proof. Taking v(k) = kt in (2) and using (3), we get (14). �
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Corollary 3.8. Taking t = 2 in Theorem 3.7, we have

−1

∆
α(k)

[
k2 − α1k

(p)(k − 1)2 − α2k
(q)(k − 2)2

]
= k2 (15)

which is a closed form solution of the difference equation

∆
α(k)

v(k) = k2 − α1k
(p)(k − 1)2 − α2k

(q)(k − 2)2.

Proof. From (14), replacing t = 2, we get 15 �

Corollary 3.9. If v(k) =
−1

∆
α(k)

[
kt−α1k

(p)(k−1)t−α2k
(q)(k−2)t

]
is the closed form

solution given in (14), then v(k)−Fn+1v(k− (n+1)−α2(k−n)(q)Fnv(k− (n+2))

=
n∑
i=0

Fi
[
(k − i)t − α1(k − i)(p)[k − (i+ 1)]t − α1(k − i)(q)[k − (i+ 2)]t

]
. (16)

Proof. Taking u(k) = kt − α1k
(p)(k− 1)t − α2k

(q)(k− 2)t in Theorem 3.1, we have

16. �

Example 3.10. Let k = 11, n = 3, t = 3, p = 3, q = 4 α1 = 3, α2 = 2 in Corollary

(3.9). Then
3∑
i=0

Fiu(11−i) = v(11)−F4v(7)−α28
(2)F3v(6) = −10464437466361548.

where u(k) = kt−α1k
(p)(k−1)t−α2k

(q)(k−2)t, F0 = 1, F1 = 2970, F2 = 6431040,

F3 = 9753670080 and F4 = 9753670080.

Theorem 3.11. If v(k) is a closed form solution of second order difference

equation v(k)− α1k
(p)v(k − 1)− α2k

(q)v(k − 2)

= ktask − α1k
(p)(k − 1)tas(k−1) − α2k

(q)(k − 2)tas(k−2),

then we have

v(k)− Fn+1v(k − [n+ 1])− α2(k − n)(q)v(k − [n+ 2]) =
n∑
i=0

Fi
[
(k − i)tas(k−i)

− α1(k − i)(p)[k − (i+ 1)]tas(k−(i+1)) − α2(k − i)(q)[k − (i+ 2)]tas(k−(i+2))
]
. (17)

Proof. Taking u(k) =
[
ktask − α1k

(p)(k − 1)tas(k−1) − α2k
(q)(k − 2)tas(k−2)

]
in

Theorem 3.1 and using (4), we get 17. �



Second Order Difference Operator with Polynomial Factorial · · · 28

Corollary 3.12. A closed form solution of the second order difference equation

with polynomial factorial ∆
α(k)

v(k) = k3ask−α1k
(p)(k−1)3as(k−1)−α2k

(p)(k−2)3as(k−2)

is k3ask and hence we have

v(k)− Fn+1v(k − (n+ 1))− α2(k − n)(q)v(k − (n+ 2)) =
n∑
i=0

Fi[(k − i)3as(k−i)×

− α1(k − i)(p)[k − (i+ 1)]3as(k−(i+1)) − α2(k − i)(q)[k − (i+ 2)]3as(k−(i+2))]. (18)

Proof. The proof follows by taking t = 3 in Theorem 3.11. �

Example 3.13. Let k = 13, a = 2, n = 3,s = 0.35 α1 = 0.8, α2 = 0.4, p = 3,

q = 2 in Corollary (3.12). Then we obtain

v(13)− F4v(9)− F3(0.4)(10)(2)v(8) =
3∑
i=0

Fi[(13− i)320.35(13−i) − (0.8)(13− i)(3)×

[13 − (i + 1)]320.35(13−(i+1)) − (0.4)(13 − i)(2)[13 − (i + 2)]320.35(13−(i+2))] =

−4427746334499175, where F0 = 1, F1 = 1372.80, F2 = 1449739.20,

F3 = 1148265930.24 and F4 = 661464964343.04.

Corollary 3.14. A closed form solution of the second order difference equation

v(k)− α1k
(p)v(k − 1)− α2k

(q)v(k − 2) = kte−sk − α1k
(p) (k − 1)t

es(k−1)
− α2k

(q) (k − 2)t

es(k−2)

is given by

v(k)− Fn+1v(k − (n+ 1))− α2Fn(k − n)(q)v(k − (n+ 2)) =
n∑
i=0

Fie
−sk×[

(k− i)teis−α1(k− i)(p)[k− (i+ 1)]te(i+1)s−α2(k− i)(q)[k− (i+ 2)]te(i+2)s
]
. (19)

Proof. Taking a = e−1 in (17), we get (19). �

Corollary 3.15. If v(k) =
−1

∆
µ

[ke−sk−α1k
(p)(k−1)e−s(k−1)−α2k

(q)(k−2)e−s(k−2)]

is the closed form solution given in (19), then

v(k)− Fn+1v(k − (n+ 1))− α2Fn(k − n)(q)v(k − (n+ 2)) =
n∑
i=0

Fie
−sk×[

(k − i)ei − α1(k − i)(p)[k − (i+ 1)]es(i+1) − α2(k − i)(q)[k − (i+ 2)]es(i+2)
]
. (20)

Proof. The proof follows by taking t = 1 in Corollory 3.14. �
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Theorem 3.16. Let v(k) be a solution of the second order difference equation with

polynomial factorial v(k)− α1k
(p)v(k − 1)− α2k

(q)v(k − 2)

= k(t)ask − α1k
(p)(k − 1)(t)as(k−1) − α2k

(q)(k − 2)(t)as(k−2), then we have

v(k)− Fn+1v(k − [n+ 1])− α2(k − n)(q)v(k − [n+ 2]) =
n∑
i=0

Fia
s(k−i)×

[
(k − i)(t) − α1(k − i)(p)

[k − (i+ 1)](t)

as
− α2(k − i)(q)

[k − (i+ 2)](t)

a2s

]
. (21)

Proof. Taking v(k) = k(t)ask in Theorem 3.1 and using (4), we get 21. �

Corollary 3.17. If v(k) is the closed form solution given of (21), then

k(2)ask − Fn+1(k− (n+ 1))(2)as(k−(n+1)) − α2(k− n)(q)(k− (n+ 2))(2)as(k−(n+2)) =

n∑
i=0

Fia
s(k−i)

[
(k−i)(2)−α1(k−i)(p)

(k − (i+ 1))(2)

as
−α2(k−i)(q)

(k−(i+ 2))(2)

a2s

]
(22)

Proof. The proof follows by taking t = 2 in Theorem 3.16. �

Example 3.18. Let k = 7, a = 4, n = 2, s = 0.55, α1 = 0.5, α2 = 0.0.08, p = 3,

q = 2 in Corollary (3.17). Then we obtain

v(7)− F3v(4)− (0.5)5(2)F2v(3) =
2∑
i=0

Fi[(7− i)(2)40.55(7−i) − (0.5)(7− i)(3)×

[7− (i+ 1)]240.55(7−(i+1))− (.08)(7− i)(2)[7− (i+ 2)]240.55(7−(i+2))] = −48558944.63,

where F0 = 1, F1 = 105, F2 = 6303.36, F3 = 189352.80.

Corollary 3.19. Let v(k) be a solution of second order difference equation

v(k)−α1k
(p)v(k−1)−α2k

(q)v(k−2) = e−sk
[
k(t)−α1k

(p)(k−1)(t)es−α2k
(q)(k−2)(t)e2

]
.

Then we have

v(k)− Fn+1v(k − [n+ 1])− α2(k − n)(q)v(k − [n+ 2]) =
n∑
i=0

Fie
−s(k−i)×[

(k − i)(t) − α1(k − i)(p)[k − (i+ 1)](t)es − α2(k − i)(q)[k − (i+ 2)](t)e2s
]
. (23)

Proof. Taking a = e−1 in (3.16), we get (23). �
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Corollary 3.20. A closed form solution of second order difference equation with

polynomial factorial ∆
α(k)

v(k) = e−sk[k(2) − α1k
(p)(k − 1)(2)es − α2k

(q)(k − 2)(2)e2s]

is k(2)e−sk and hence we have

v(k)− Fn+1v(k − (n+ 1))− α2(k − n)(q)v(k − (n+ 2)) =
n∑
i=0

Fie
−s(k−i)

[
(k − i)(2) − α1(k − i)(p)[k − (i+ 1)](2)es − α2(k − i)(q)[k − (i+ 2)](2)e2s

]
. (24)

Proof. The proof follows by taking t = 2 in Corollory (3.19), we get (24). �

Example 3.21. Let k = 12, n = 2, s = 0.64, a = 0.25, α1 = 2.22, α2 = 0.333,

p = 3, q = 2 in Corollary (3.20). Then we obtain

v(12)− F3v(9)− (0.333)F2v(8) =
2∑
i=0

Fi[(12− i)(2)(0.25)0.64(12−i) − (2.22)(12− i)(3)

×[12−(i+1)](2)(0.25)0.64(12−(i+1))−(0.333)(12−i)(2)[12−(i+2)](2)(0.25)0.64(12−(i+2))]

= −2400227388.32, where F0 = 1, F1 = 2930.40, F2 = 6440477.08 and F3 =

10294565898.83.

Conclusion: We obtained summation formula to α(k)-Fibonacci sequence by

introducing α(k)-difference operator and have derived certain results on closed

and summation form solution of second order difference equation which will be

used to our further research.
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