Hausdorff Property of Transformation Graphs

${ }^{1}$ M.K. Angel Jebitha and ${ }^{2}$ Y. Nisa
Received on 5 January 2019, Accepted on 22 February 2019

Abstract

A Hausdorff graph G is a simple graph in which any two vertices u and v of G satisfy atleast one of the following conditions: (i) both u and v are isolated vertices (ii) either u or v is an isolated vertex (iii) there exists two non-adjacent edges e_{1} and e_{2} of G such that e_{1} is incident with u and e_{2} is incident with v. In this paper, we investigate Hausdorff property on transformation graphs.

Key words: Hausdorff Graph, Transformation Graph.
Mathematics Subject classification 2010: 05C76, 05C99.

1. Introduction

In [5], eight types of transformation graph were introduced and their basic properties were studied. Several authors have worked on these eight types of transformation graph separately. In [2], B. Wu, L. Zhang, Z. Zhang obtained a necessary and sufficient condition for G^{-++}to be hamiltonian.

Let $G=(V(G), E(G))$ be a simple undirected graph and x, y, z be three variables taking values + or - . The transformation graph $G^{x y z}$ is the graph having $V(G) \cup E(G)$ as a vertex set, and two vertices α and β of $G^{x y z}$ are adjacent if and only if one of the following conditions holds: (i) for $\alpha, \beta \in V(G), \alpha$ and β are adjacent in G if $x=+; \alpha$ and β are not adjacent in G if $x=-$ (ii) for $\alpha, \beta \in E(G), \alpha$ and β are adjacent in G if $y=+; \alpha$ and β are not adjacent in G if $y=-$ (iii) for $\alpha \in V(G), \beta \in E(G), \alpha$ and β are incident in G if $z=+; \alpha$ and β are not incident in G if $z=-$.

[^0]Seena and Raji introduced Hausdorff properties in [3] and they discussed Hausdorff property of some derived graphs. A Hausdorff graph G is a simple graph in which any two vertices u and v of G satisfy atleast one of the following conditions: (i) both u and v are isolated vertices (ii) either u or v is an isolated vertex (iii) there exists two non-adjacent edges e_{1} and e_{2} of G such that e_{1} is incident with u and e_{2} is incident with v. Terms not defined are used in the sense of [1]. We use the following theorems for proving main results.

Theorem 1.1. 5] For a graph $G, G^{+y z} \cong G$ if and only if G is an empty graph.

Theorem 1.2. [2] For a graph G, G^{-++}is Hamiltonian if and only if $|V(G)| \geq 3$.

Theorem 1.3. [3] Any Hamiltonian graph with more than 3 vertices is Hausdorff.
In this paper, we obtain results on $G^{+++}, G^{---}, G^{-++}$and G^{+--}.

2. Main Result

In this section, we obtain necessary and sufficient condition for G^{+++}to be Hausdorff, sufficient condition for G^{---}to be non-Hausdorff and sufficient condition for G^{-++}and G^{+--}to be Hausdorff.

Theorem 2.1. The transformation graaph G^{+++}of a graph G is Hausdorff if and only if G has no copy of K_{2} as a component.

Proof. Assume that G has no copy of K_{2} as a component. Let u_{1}, u_{2} be two distinct vertices of G^{+++}.
case 1: $u_{1}, u_{2} \in V(G)$.
Subcase (i) u_{1} and u_{2} are isolated in G.
Then u_{1} and u_{2} are isolated in G^{+++}.
Subcase (ii) u_{1} or u_{2} is isolated in G.
Then u_{1} or u_{2} is isolated in G^{+++}.

Subcase (iii) u_{1} and u_{2} are adjacent vertices of G.
Let $e_{1}=u_{1} u_{2}$. By hypothesis, there exists a vertex u_{3} such that u_{3} is adjacent to either u_{1} or u_{2}. Suppose that u_{3} is adjacent to u_{1} in G. Then clearly $u_{2} e_{1}$ and $u_{1} u_{3}$ are two non-adjacent edges of G^{+++}. Suppose that u_{3} is adjacent to u_{2} in G. Then clearly $u_{1} e_{1}$ and $u_{2} u_{3}$ are two non-adjacent edges of G^{+++}.

Subcase (iv) u_{1} and u_{2} are non adjacent vertices of G.
Since u_{1} and u_{2} are not isolated, there exists two distinct edges e_{1} and e_{2} such that e_{1} is incident with u_{1} and e_{2} is incident with u_{2}. Then $u_{1} e_{1}$ and $u_{2} e_{2}$ are two non-adjacent edges of G^{+++}.
Case 2: $u_{1}, u_{2} \in E(G)$.
Since $u_{1} \neq u_{2}$, there exists two distinct vertices u_{3} and u_{4} such that u_{1} is incident with u_{3} and u_{2} is incident with u_{4}. Then $u_{1} u_{3}$ and $u_{2} u_{4}$ are two non-adjacent edges of G^{+++}.
Case 3: $u_{1} \in V(G)$ and $u_{2}\left(\right.$ say $\left.e_{1}\right) \in E(G)$.
Subcase (i) e_{1} is incident with u_{1} in G.
Let $e_{1}=u_{1} u_{3}$ be an edge of G. By hypothesis, there exists an edge e_{2} different from e_{1} such that e_{1} and e_{2} are adjacent in G. Then $e_{1} e_{2}$ and $u_{1} u_{3}$ are two non-adjacent edges of G^{+++}.
Subcase (ii) e_{1} is not incident with u_{1} in G.
Suppose u_{1} is isolated in G. Then u_{1} is isolated in G^{+++}. Suppose u_{1} is not isolated in G. Then there exists an edge e_{2} incident with u_{1} in G. Let u_{3} be one endpoint of e_{1} in G. Then clearly $u_{1} e_{2}$ and $e_{1} u_{3}$ are two non-adjacent edges of G^{+++}. Thus G^{+++}is Hausdorff.

Conversely, Assume that G^{+++}is Hausdorff. Suppose K_{2} is one of the component of G. Let u_{1}, u_{2} be two distinct vertices of G^{+++}. Suppose $u_{1}, u_{2} \in V\left(K_{2}\right)$. Let $e_{1}=u_{1} u_{2}$ be an edge of K_{2}. Then $V\left(G^{+++}\right) \supseteq\left\{e_{1}, u_{1}, u_{2}\right\}$. For these three vertices of G^{+++}, hausdorff property is not true. Therefore G has no copy of K_{2} as a component.

Theorem 2.2. The transformation graph G^{---}of a graph G is not Hausdorff if $G \cong K_{1, r} \cup K_{1}$ or $G \cong K_{1, r}+e$ where e is an edge and $r \geq 1$.

Proof. Suppose $G \cong K_{1, r} \cup K_{1}$. Then G consists of an isolated vertex u_{1} and a vertex u_{2} such that u_{2} is adjacent to every other vertices of G other than u_{1}. Hence by the definition of the transformation graph G^{---}, u_{2} is adjacent to u_{1} in G^{---} and no other vertices of G^{---}is adjacent to u_{2}. So $\operatorname{deg} u_{2}=1$ in G^{---}. Therefore G^{---}is not Hausdorff.

Suppose $G \cong K_{1, r}+e$. Then G consists of a vertex u such that u is adjacent to every other vertices of G and e is an edge of G not incident with u. Hence by the definition of the transformation graph G^{---}, u is adjacent to e in G^{---}and no other vertices of G^{---}is adjacent to u. So $\operatorname{deg} u=1$ in G^{---}. Therefore G^{---}is not Hausdorff.

Remark 1. The converse of the above theorem need not be true. For a graph K_{3}^{c}, G^{---}is not Hausdorff.

Theorem 2.3. Let G be any graph of order $n \geq 4$. Then G^{-++}is Hausdorff.

Proof. By Theorem 1.2, G^{-++}is Hamiltonian. Hence by Theorem 1.3, it is Hausdorff.

Theorem 2.4. If G is an empty graph then $G^{+y z}$ is Hausdorff.
Proof. By Theorem 1.1, $G^{+y z}$ is an empty graph. Hence it is Hausdorff.
Theorem 2.5. Let G be any graph of order $n \geq 4$. If G has no copy of K_{2} as a component then G^{+--}is Hausdorff.

Proof. Let u_{1} and u_{2} be two distinct vertices of G^{+--}. Suppose G is a empty graph, then G^{+--}is a empty graph. Therefore G^{+--}is Hausdorff. Suppose G is not a empty graph.

Case 1: $u_{1}, u_{2} \in V(G)$.
Subcase (i) u_{1} and u_{2} are isolated in G.
Since G is not a empty graph, there exists at least one edge e_{1}. By hypothesis, there exists an edge e_{2} such that e_{2} is adjacent to e_{1}. Then $u_{1} e_{1}$ and $u_{2} e_{2}$ are two non-adjacent edges of G^{+--}.
Subcase (ii) u_{1} or u_{2} is isolated in G.
Suppose u_{1} is isolated in G. Since u_{2} is not islated in G, there exists a vertex u_{3} such that u_{3} is adjacent to u_{2}. Let $e_{1}=u_{2} u_{3}$. Then $u_{1} e_{1}$ and $u_{2} u_{3}$ are two non-adjacent edges of G^{+--}.
Subcase (iii) u_{1} and u_{2} are adjacent vertices of G.
Let $e_{1}=u_{1} u_{2}$. By hypothesis, there exists another edge e_{2} of G which is incident with either u_{1} or u_{2}. Let us take $e_{2}=u_{1} u_{3}$. Then $u_{1} u_{3}$ and $u_{2} e_{2}$ are two non-adjacent edges of G^{+--}.

Subcase (iv) u_{1} and u_{2} are non-adjacent vertices of G.
Since $u_{1} \neq u_{2}$, there exists two distinct edges e_{1} and e_{2} such that e_{1} is incident with u_{1} and e_{2} is incident with u_{2}. Then $u_{1} e_{2}$ and $u_{2} e_{1}$ are two non-adjacent edges of G^{+--}.

Case 2: $u_{1}, u_{2} \in E(G)$.
Since $u_{1} \neq u_{2}$, there exists two distinct vertices u_{3} and u_{4} of G such that u_{1} is incident with u_{3} and u_{2} is incident with u_{4}. Then $u_{1} u_{4}$ and $u_{2} u_{3}$ are two non-adjacent edges of G^{+--}.

Case 3: $u_{1} \in V(G), u_{2}\left(=e_{1}\right) \in E(G)$.
Subcase (i) e_{1} is incident with u_{1} in G.
Let $e_{1}=u_{1} u_{3}$. By hypothesis, there exists an edge e_{2} different from e_{1} such that e_{2} is incident with u_{1} or u_{3}. Let us suppose that e_{2} is adjacent to u_{1}. Let us take $e_{2}=u_{1} u_{4}$. Then $u_{1} u_{3}$ and $e_{1} u_{4}$ are two non-adjacent edges of G^{+--}.
Subcase (ii) e_{1} is not incident with u_{1} in G.
Suppose u_{1} is isolated in G. Let $e_{1}=u_{3} u_{4}$. By hypothesis, there exists an edge e_{2} which is incident with either u_{3} or u_{4}. Let us take $e_{2}=u_{4} u_{5}$. Then $u_{1} e_{2}$ and $e_{1} u_{3}$ are two non-adjacent edges of G^{+--}. Suppose u_{1} is not isolated in G. Then u_{1} is
adjacent to a vertex u_{3} in G. Let us take $e_{2}=u_{1} u_{3}$. Let u_{4} be an endpoint of e_{1} in G. Suppose e_{1} is adjacent to e_{2} in G. Then e_{1} is incident with u_{3}. Since $n \geq 4$, there exists a vertex u_{5} not incident with e_{1} other than u_{1}. Then clearly $u_{1} u_{3}$ and $e_{1} u_{5}$ are two non-adjacent edges of G^{+--}. Suppose e_{1} is not adjacent to e_{2} in G. Then $u_{1} u_{3}$ and $e_{1} e_{2}$ are two non-adjacent edges of G^{+--}.

Thus by all the above cases G^{+--}is Hausdorff.

References

[1] Gary Chartrand, Ping Zhang, Introduction to Graph Theory, Tata McGraw-Hill Edition (2006).
[2] B. Wu, L. Zhang, Z. Zhang, The transformation graph $G^{x y z}$ when $x y z=-++$, Discrete Mathematics, 296 (2005), 263-270.
[3] V. Seena and Raji Pilakkat, Hausdroff Graph, British Journal of Mathematics and Computer Science, Vol. 12, No. 1 (2016), 1-12.
[4] V. Seena and Raji Pilakkat, Hausdorff Property of Some Derived Graphs, Far East Journal of Mathematical Science, Vol. 100, Iss. 7 (2016), 1017-1030.
[5] Wu Baoyindureng and Meng Jixiang, Basic properties of Total Transformation Graphs, Journal of Mathematical Study, Vol. 34, No. 2 (2001), 109-116.

[^0]: ${ }^{1}$ Corresponding Author: E-mail: angeljebitha@holycrossngl.edu.in ${ }^{2}$ nisavijaya96@gmail.com
 ${ }^{1,2}$ Department of Mathematics Holy Cross College(Autonomous) Nagercoil, Tamil Nadu, India.

