

Journal of Computational Mathematica

Journal homepage: www.shcpub.edu.in

Skolem Mean Labeling of Four Star Graphs $K_{1,a_1} \cup K_{1,a_2} \cup K_{1,a_3} \cup K_{1,b}$ where $|b-(a_1+a_2+a_3)|=4$

¹D.S.T.Ramesh and ²S.O.Sopna

Received on 21 January 2018, Accepted on 15 May 2018

ABSTRACT. In this paper, we prove that four star graph $G = K_{1,a_1} \cup K_{1,a_2} \cup K_{1,a_3} \cup K_{1,b}$ where $a_1 \leq a_2 \leq a_3$ is a skolem mean graph if $|b - (a_1 + a_2 + a_3)| = 4$.

Key words: Skolem mean graph, skolem mean labeling, star graphs.

1. Introduction

In this paper all graphs are finite, simple and undirected. Terms and notations are used in the sense of Harary [3]. Much work is done by many researchers on skolem mean labelling [1], [2] and [3]. In [5], [6] and [7] some results are proved in four star graph $G = K_{1,a_1} \cup K_{1,a_2} \cup K_{1,a_3} \cup K_{1,b}$ on skolem mean labelling. In this paper, we prove that four star graph $G = K_{1,a_1} \cup K_{1,a_2} \cup K_{1,a_3} \cup K_{1,b}$ where $a_1 \leq a_2 \leq a_3$ is a skolem mean graph if $|b - (a_1 + a_2 + a_3)| = 4$. That is when $b = (a_1 + a_2 + a_3) + 4$ and $b = (a_1 + a_2 + a_3) - 4$.

Definition 1.1. A graph G = (V, E) with p vertices and q edges is said to be a skolem mean graph if there exists a function f from the vertex set of G to $1, 2, \dots, p$ such that the induced map f^* from the edge set of G to $2, 3, \dots, p$ defined by

$$f^*(e = uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$$

the resulting edges get unique labels from the set $2, 3, \dots, p$.

¹Corresponding Author: E-mail: dstramesh@gmail.com, ²s.sopna@yahoo.com

¹Department of Mathematics, Margchosis College, Nazareth, Manonmaniam Sundaranar University, Tirunelveli - 627012, Tamil Nadu, India.

²Department of Mathematics, The American College, Madurai, Manonmaniam Sundaranar University, Tirunelveli - 627012, Tamil Nadu, India.

Theorem 1.2. The four star $G = K_{1,a_1} \cup K_{1,a_2} \cup K_{1,a_3} \cup K_{1,b}$ where $a_1 \le a_2 \le a_3$ is a skolem mean graph if $|b - (a_1 + a_2 + a_3)| = 4$.

Proof. Let
$$A_i = \sum_{k=1}^i a_k$$
. That is, $A_1 = a_1$; $A_2 = a_1 + a_2$ and $A_3 = a_1 + a_2 + a_3$.

Consider the graph $G = K_{1,a_1} \cup K_{1,a_2} \cup K_{1,a_3} \cup K_{1,b}$. Let $V = \bigcup_{k=1}^{4} V_k$ be the vertex set of G where $V_k = \{v_{k,i} : 0 \le i \le a_k\}$ for $1 \le k \le 3$ and $V_4 = \{v_{4,i} : 0 \le i \le b\}$.

Let $E = \bigcup_{k=1}^{4} E_k$ be the edge set of G where $E_k = \{v_{k,0}v_{k,i} : 0 \le i \le a_k\}$ for $1 \le k \le 3$ and $E_4 = \{v_{4,0}v_{4,i} : 0 \le i \le b\}$.

The condition $|b - (a_1 + a_2 + a_3)| = 4 \Rightarrow b = A_3 - 4 \text{ or } b = A_3 + 4$.

That is, there are two cases viz. $b = A_3 - 4$ and $b = A_3 + 4$.

Let us prove in each of the two cases the graph G is a skolem mean graph.

Case 1: Let $b = A_3 + 4$

G has $A_3 + b + 4 = 2A_3 + 8$ vertices and $A_4 + b = 2A_3 + 4$ edges.

The vertex labeling

$$f: V \to \{1, 2, \dots, A_3 + b + 4 = 2A_3 + 8\}$$
 is defined as follows:

$$f(v_{1,0}) = 1;$$
 $f(v_{2,0}) = 2;$ $f(v_{3,0}) = 4;$
 $f(v_{4,0}) = A_3 + b + 3 = 2A_3 + 7$
 $f(v_{1,i}) = 2i + 4$ $1 < i < a_1$

$$f(v_{2,i}) = 2A_1 + 2i + 4 \qquad 1 \le i \le a_2$$

$$f(v_{3,i}) = 2A_2 + 2i + 4$$
 $1 \le i \le a_3$

$$f(v_{4,i}) = 2i + 11 \le i \le b - 2 = A_3 + 2$$

$$f(v_{4,b-1}) = A_3 + b + 2 = 2A_3 + 6$$

$$f(v_{4,b}) = A_3 + b + 4 = 2A_3 + 8$$

The corresponding edge labels are as follows:

The edge label of $v_{1,0}v_{1,i}$ is 3+i for $1 \le i \le a_1$ (edge labels are $4, 5, \dots, a_1+3 = A_1+3$), $v_{2,0}v_{2,i}$ is A_1+3+i for $1 \le i \le a_2$ (edge labels are $A_1+4, A_1+5, \dots, A_2+3$), $v_{3,0}v_{3,i}$ is A_2+4+i for $1 \le i \le a_3$ (edge labels are $A_2+5, A_2+6, \dots, A_3+4$), $v_{4,0}v_{4,i}$ is A_3+4+i for $1 \le i \le b-2 = A_3+2$ (edge labels are $A_3+5, A_3+6, \dots, 2A_3+6$), $v_{4,0}v_{b-1}$ is $2A_3+7$ and $v_{4,0}v_{4,b}$ is $2A_3+8$.

These induced edge labels of graph G are unique.

Hence G is a skolem mean graph.

FIGURE 1. $K_{1,5} \cup K_{1,6} \cup K_{1,7} \cup K_{1,22}$

Case 2: Let $b = A_3 - 4$

G has $A_3 + b + 4 = 2A_3$ vertices and $A_3 + b = 2A_3 - 4$ edges.

The vertex labeling $f: V \to \{1, 2, \dots, A_3 + b + 4 = 2A_3\}$ is defined as follows:

$$f(v_{1,0}) = 2; \quad f(v_{2,0}) = 4; \quad f(v_{3,0}) = 6;$$

$$f(v_{4,0}) = A_3 + b + 4 = 2A_3$$

$$f(v_{1,i}) = 2i - 1 \qquad 1 \le i \le a_1$$

$$f(v_{2,i}) = 2A_1 + 2i - 1 \qquad 1 \le i \le a_2$$

$$f(v_{3,i}) = 2A_2 + 2i - 1 \qquad 1 \le i \le a_3$$

$$f(v_{4,i}) = 2i + 6 \qquad 1 \le i \le b$$

The corresponding edge labels are as follows:

The edge label of $v_{1,0}v_{1,i}$ is 1+i for $1 \le i \le a_1$ (edge labels are $2, 3, \dots, a_1+1 = A_1+1$), $v_{2,0}v_{2,i}$ is A_1+2+i for $1 \le i \le a_2$ (edge labels are $A_1+3, A_1+4, \dots, A_2+2$), $v_{3,0}v_{3,i}$ is A_2+3+i for $1 \le i \le a_3$ (edge labels are $A_2+4, A_2+5, \dots, A_2+a_3+3=A_3+3$), $v_{4,0}v_{4,i}$ is A_3+3+i for $1 \le i \le b=A_3-4$ (edge labels are $A_3+4, A_3+5, \dots, A_3+3+b=A_3+3+A_3-4=2A_3-1$).

These induced edge labels of graph G are unique.

Hence G is a skolem mean graph.

Example 1.3.

FIGURE 2. $K_{1,6} \cup K_{1,7} \cup K_{1,1} \cup K_{1,20}$

81

REFERENCES

- V.Balaji, D. S. T. Ramesh and A. Subramanian, Skolem Mean Labeling, Bulletin of Pure and Applied Sciences, Vol. 26E No. 2 (2007), 245-248.
- [2] V.Balaji, D. S. T. Ramesh and A. Subramanian, Some Results on Skolem Mean graphs, Bulletin of Pure and Applied Sciences, Vol. 27E No. 1 (2008), 67-74.
- [3] J. A Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 14 (2016),#DS6.
- [4] F.Harary, Graph Theory, Addison-Wesley, Reading Mars, (1972).
- [5] D.S.T.Ramesh, S.O.Sopna, I.Gnanaselvi and M.P.Syed Ali Nisaya Skolem Mean Labeling Of Four Star Graphs $K_{1,a_1} \cup K_{1,a_2} \cup K_{1,a_3} \cup K_{1,b}$ where $a_1 + a_2 + a_3 + 2 \le b \le a_1 + a_2 + a_3 + 3$, International Journal of Scientific Research Vol.6, Issue 8 (Aug. 2017) PP.190-193
- [6] D. S. T.Ramesh, S.O.Sopna and I.Gnanaselvi Skolem Mean Labeling Of Four Star Graphs $K_{1,a_1} \cup K_{1,a_2} \cup K_{1,a_3} \cup K_{1,b}$ where $a_1 + a_2 + a_3 1 \le b \le a_1 + a_2 + a_3 + 1$, IOSR Journal of Engineering (IOSRJEN), Vol 07, Issue 07, (July 2017) PP. 05-11.
- [7] D. S. T.Ramesh, S.O.Sopna and I.Gnanaselvi Skolem Mean Labeling Of Four Star Graphs $K_{1,a_1} \cup K_{1,a_2} \cup K_{1,a_3} \cup K_{1,b}$ where $a_1 + a_2 + a_3 3 \le b \le a_1 + a_2 + a_3 2$, International Journal of Engineering Research and Applications (IJERA), Volume 7, Issue 9, (part8) September 2017 PP.29-32.

www.shcpub.edu.in