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Abstract. In this paper, the existence and uniqueness of common and

coincidence fixed points for a pair of self mappings under generalized rational

inequalities are established in complex valued metric spaces with supportive

examples. The presented results improve and generalize the existing results in

the literature.
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1. Introduction and Preliminaries

Metric fixed point theory is widely recognized as one of the important traditional

theories in nonlinear analysis that has a wide range of applications that have

been originated in the PhD thesis of Banach [2] in 1922 where he proved the

famous contraction mapping principle. Banach contraction principle assures the

existence and uniqueness of a solution of an operator equation Tx = x, is the

most widely used fixed point theorem in all of analysis. This principal is

constructive in nature and is one of the most useful techniques in the concept of

nonlinear equations. A great number of generalizations of the Banach

contraction mapping principle were studied by many authors in metric spaces

and some other spaces, see [3, 4, 6–13] and references given therein. These

generalizations were made either by using the contractive condition or by

imposing some additional conditions on an ambient space.
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Dass and Gupta [4] generalized Banach contraction principle under rational

inequality. Later, Pachpatte [6] obtained the common fixed points for the

mappings satisfying rational contractions. In 2011, Azam et al. introduced the

concept of complex valued metric spaces and obtained some fixed point results

for mappings satisfying a rational inequality. In [14], Saluja proved some fixed

point theorems under rational contraction in the context of complex valued

metric spaces. In spite of these results, in this paper, we prove the existence

and uniqueness of common and coincidence fixed points for a pair of self

mappings satisfying a generalized rational contractive condition in complex

valued metric spaces. Examples are given to support the results obtained. The

presented results improve and generalize the well known results in the literature.

We now recall the basic definitions and results that are required in the sequel.

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order

� on C as follows: z1 � z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2). It

follows that z1 � z2 if one of the following conditions is satisfied:

(i) Re(z1) = Re(z2), Im(z1) < Im(z2);

(ii) Re(z1) < Re(z2), Im(z1) = Im(z2);

(iii) Re(z1) < Re(z2), Im(z1) < Im(z2);

(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we will write z1 � z2 if z1 /∈ z2 and one of (i), (ii), or (iii) is satisfied

and we will write z1 ≺ z2 if only (iii) is satisfied. Note that

0 � z1 � z2 ⇒ |z1| < |z2|,

z1 � z2, z2 ≺ z3 ⇒ z1 ≺ z3.

In 2011, Azam et al. [1] introduced the following definition.

Definition 1.1. Let X be a nonempty set. Suppose that the mapping d : X×X →

C satisfies the following:

(i) 0 � d(x, y) for all x, y ∈ X with x /∈ y and d(x, y) = 0⇐⇒ x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.
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Then d is called a complex valued metric on X and (X, d) is called a complex

valued metric space.

Example 1.2. Let X = C, where C is the set of complex numbers. Define a

mapping d : X×X → C by d(z1, z2) = eit|z1−z2|, where z1 = (x1, y1), z2 = (x2, y2)

and t ∈ [0, π/2]. Then (X, d) is a complex valued metric space.

Definition 1.3. (i) A point x ∈ X is called an interior point of a subset

A ⊆ X whenever there exists 0 ≺ r ∈ C such that B(x, r) = {y ∈ X :

d(x, y) ≺ r} ⊆ A.

(ii) A point x ∈ X is called a limit of A whenever for every 0 ≺ r ∈ C such

that B(x, r) ∩
(
A− {X}

)
/∈ ∅.

(iii) The set A is called open whenever each element of A is an interior point

of A. A subset B is called closed whenever each limit point of B belongs toB.

The family F := {B(x, r) : x ∈ X, 0 ≺ r} is a sub-basis for a Hausdorff topology

τ on X.

Definition 1.4. Let (X, d) be a complex valued metric space. Let {xn} be a

sequence in X and x ∈ X. Then

(i) {xn} is called convergent, if for every c ∈ C, with 0 ≺ c there exists n0 ∈ C

such that for all n > n0, d(xn, x) ≺ c. Also, {xn} converges to x (written

as, xn → x or lim
n→∞

xn = x) and x is the limit of {xn}.

(ii) {xn} is called a Cauchy sequence in X, if for every c ∈ C, with 0 ≺ c there

exists n0 ∈ N such that for all n > n0, d(xn, xn+m) ≺ c.

(iii) If every Cauchy sequence converges in X, then X is called a complete

complex valued metric space.

Lemma 1.5. [1] Let (X, d) be a complex valued metric space and let {xn} be a

sequence in X. Then {xn} converges to x if and only if lim
n→∞

|d(xn, x)| = 0.

Lemma 1.6. [1] Let (X, d) be a complex valued metric space and let {xn} be a

sequence in X. Then {xn} is a Cauchy sequence if and only if

lim
m,n→∞

|d(xn, xn+m)| = 0.
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Definition 1.7. Let X be a nonempty set and S, T : X → X be self mappings.

Then

(i) an element x ∈ X is said to be a fixed point of T if x = Tx.

(ii) If Sx = Tx, then x ∈ X is called a coincidence point of T and f .

(iii) If u = Sx = Tx, then u ∈ X is called a point of coincidence of T and f .

(iv) If x = Sx = Tx then x is called a common fixed point of S and T .

(v) The mappings S and T are said to be commuting if S(Tx) = T (Sx) for all

x ∈ X.

(vi) The mappings S and T are said to be weakly compatible if they commute

at their coincidence points.

Proposition 1.8. Let f and g be weakly compatible self mappings on a non empty

set X. If f and g have a unique point of coincidence v = fu = gu, then v is the

unique common fixed point of f and g.

2. Main Results

The following is one of the main results of this section.

Theorem 2.1. Let (X, d) be a complex valued metric space and S, T : X → X be

two self mappings such that T (X) ⊆ S(X) and S(X) is a complete subspace of X.

Suppose that

d(Tx, Ty) � µmax

{
d(Sx, Sy),

d(Sx, Tx)d(Sy, Ty)

1 + d(Sx, Sy)
,

d(Sx, Tx)d(Sy, Ty)

1 + d(Tx, Ty)

}
(1)

for all x, y ∈ X, x 6= y, where µ < 1. Then T and S have a unique point of

coincidence in X. In addition, if T and S are weakly compatible then T and f

have a unique common fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point. Since T (X) ⊂ S(X), there exists x1 ∈ X

such that Tx0 = Sx1. Proceeding in this fashion, for xn ∈ X, we get xn+1 ∈ X

such that Txn = Sxn+1, n = 0, 1, 2, . . . . Then, using (3), we obtain
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d(Sxn+1, Sxn) � d(Txn, Txn−1)

� µmax

{
d(Sxn, Sxn−1),

d(Sxn, Txn)d(Sxn−1, Txn−1)

1 + d(Sxn, Sxn−1)
,

d(Sxn, Txn)d(Sxn−1, Txn−1)

1 + d(Txn, Txn−1)

}
= µmax

{
d(Sxn, Sxn−1),

d(Sxn, Sxn+1)d(Sxn−1, Sxn)

1 + d(Sxn, Sxn−1)
,

d(Sxn, Sxn+1)d(Sxn−1, Sxn)

1 + d(Sxn+1, Sxn)

}
.

Case 1: If the maximum is d(Sxn, Sxn−1), then

d(Sxn+1, Sxn) � µd(Sxn, Sxn−1),

where µ < 1. Continuing in this way, we obtain

d(Sxn+1, Sxn) � µd(Sxn, Sxn−1) � µ2d(Sxn−1, Sxn−2) � . . . � µnd(Sx0, Sx1).

For m > n, we have

d(Sxm, Sxn) � d(Sxm, Sxm−1) + d(Sxm−1, Sxm−2) + · · ·+ d(Sxn+1, Sxn),

� (µm−1 + µm−2 + · · ·+ µn)d(Sx1, Sx0),

� µn

1− µ
d(Sx1, Sx0).

Finally, we have

|d(Sxm, Sxn)| ≤ µn

1− µ
|d(Sx1, Sx0)| → 0 as m,n→∞.

Case 2: If the maximum is
d(Sxn, Sxn+1)d(Sxn−1, Sxn)

1 + d(Sxn, Sxn−1)
, then it is easy to note

that it will bring a contraction to our assumption.

Case 3: If the maximum is
d(Sxn, Sxn+1)d(Sxn−1, Sxn)

1 + d(Sxn+1, Sxn)
, then it can be seen that

d(Sxn+1, Sxn) � µd(Sxn, Sxn−1)− 1,

� µ2d(Sxn−1, Sxn−2)− µ− 1,

� . . . � µnd(Sx1, Sx0)− (1 + µ+ µ2 + . . .+ µn−1).

Since µ < 1, for m > n we have |d(Sxm, Sxn)| → 0 as m,n→∞.
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Thus, from all three cases, it can be shown that {Sxn} is a Cauchy sequence

in S(X). Because of the completeness of S(X), Sxn → v and there exists u ∈ X

such that Su = v. Further, we have

d(Sxn, Tu) = d(Txn−1, Tu)

� µmax

{
d(Sxn−1, Su),

d(Sxn−1, Txn−1)d(Su, Tu)

1 + d(Sxn−1, Su)
,

d(Sxn−1, Txn−1)d(Su, Tu)

1 + d(Txn−1, Tu)

}
= µmax

{
d(Sxn−1, Su),

d(Sxn−1, Sxn)d(Su, Tu)

1 + d(Sxn−1, Su)
,

d(Sxn−1, Sxn)d(Su, Tu)

1 + d(Sxn, Tu)

}
Now, letting n→∞, we obtain

|d(v, Tu)| ≤ 0,

which implies that Tu = v = Su, that is, v is a point of coincidence of T and S.

Now we claim that v is a unique point of coincidence of T and S. Suppose there

exists another point of coincidence v′ of T and S, that is, Tu′ = v′ = Su′. Then,

from (3), we have

d(Su, Su′) = d(Tu, Tu′)

� µmax

{
d(Su, Su′),

d(Su, Tu)d(Su′, Tu′)

1 + d(Su, Su′)
,

d(Su, Tu)d(Su′, Tu′)

1 + d(Tu, Tu′)

}
which gives

|d(Su, Su′)| ≤ a|d(Su, Su′)|.

Thus, Su = Su′ which shows that v is a unique point of coincidence of T and S.

Now, by Proposition 1.8, T and f have a unique common fixed point in X. �

Remarks 2.2.

(i) Theorem 2.1 generalizes and improves Theorem 4 of Azam et al. [1], Theorem

3.1 of Saluja [14].
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(ii) Moreover, Theorem 2.1 guarantees the existence and uniqueness of coincidence

point of S and T.

We obtain the following result by taking S = IX (the identity mapping) in

Theorem 2.1.

Corollary 2.3. Let (X, d) be a complete complex valued metric space and T : X →

X be a self mapping such that

d(Tx, Ty) � µmax

{
d(x, y),

d(x, Tx)d(y, Ty)

1 + d(x, y)
,

d(x, Tx)d(y, Ty)

1 + d(Tx, Ty)

}
(2)

for all x, y ∈ X, x 6= y, where µ < 1. Then T has a unique fixed point in X.

Theorem 2.4. Let (X, d) be a complex valued metric space and S, T : X → X be

two self mappings such that T (X) ⊆ S(X) and S(X) is a complete subspace of X.

Suppose that

d(Tx, Ty) � ad(Sx, Sy) + b
d(Sx, Tx)d(Sy, Ty)

1 + d(Sx, Sy)

+c
d(Sx, Tx)d(Sy, Ty)

1 + d(Tx, Ty)
(3)

for all x, y ∈ X, x 6= y, where a, b, c are non negative constants such that a+b+c <

1. Then T and S have a unique point of coincidence in X. In addition, if T and

S are weakly compatible then T and S have a unique common fixed point in X.

Corollary 2.5. Let (X, d) be a complete complex valued metric space and T : X →

X be a self mapping such that

d(Tx, Ty) � ad(x, y) + b
d(x, Tx)d(y, Ty)

1 + d(x, y)

+c
d(x, Tx)d(y, Ty)

1 + d(Tx, Ty)
(4)

for all x, y ∈ X, x 6= y, where a, b, c are non negative constants such that a+b+c <

1. Then T has a unique fixed point in X.
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Corollary 2.6. Let (X, d) be a complex valued metric space and S, T : X → X be

two self mappings such that T (X) ⊆ S(X) and S(X) is a complete subspace of X.

Suppose that

d(Tx, Ty) � ad(Sx, Sy)

for all x, y ∈ X, x 6= y, where a is a non negative constant such that a < 1. Then

T and S have a unique point of coincidence in X. Moreover, if T and S are weakly

compatible then T and S have a unique common fixed point in X.

Putting S = IX (the identity mapping) in the previous corollary, we get the

following Banach Contraction Principle [2] in the framework of complex metric

spaces.

Corollary 2.7. Let (X, d) be a complete complex valued metric space and T : X →

X be a self mappings such that

d(Tx, Ty) � ad(x, y)

for all x, y ∈ X, x 6= y, where 0 < a < 1. Then T has a unique fixed point in X.

Theorem 2.8. Let (X, d) be a complex valued metric space and S, T : X → X be

two self mappings such that T n(X) ⊆ Sn(X) and Sn(X) is a complete subspace of

X. Suppose that the following holds for some fixed n ∈ N

d(T nx, T ny) � µmax

{
d(Snx, Sny),

d(Snx, T nx)d(Sny, T ny)

1 + d(Snx, Sny)
,

d(Snx, T nx)d(Sny, T ny)

1 + d(T nx, T ny)

}
(5)

for all x, y ∈ X, x 6= y, where µ < 1. Then T and S have a unique point of

coincidence in X. In addition, if T and S are weakly compatible then T and f

have a unique common fixed point in X.
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Proof. It follows that T nu = Snu = u from Theorem 2.1, for fixed n ∈ N. Then

d(Su, Tu) = d(ST nu, TT nu) = d(T nSu, T nTu)

� µmax

{
d(SnSu, SnTu),

d(SnSu, T nSu)d(SnTu, T nTu)

1 + d(SnSu, SnTu)
,

d(SnSu, T nSu)d(SnTu, T nTu)

1 + d(T nSu, T nTu)

}
= µmax

{
d(SSnu, TSnu),

d(SSnu, ST nu)d(TSnu, TT nu)

1 + d(SSnu, TSnu)
,

d(SSnu, ST nu)d(TSnu, TT nu)

1 + d(ST nu, TT nu)

}
which yields that

|d(Su, Tu)| = µmax

{
|d(Su, Tu)|, |d(Su, Su)||d(Tu, Tu)|

1 + |d(Su, Tu)|
,

|d(Su, Su)||d(Tu, Tu)|
1 + |d(Su, Tu)|

}
Finally, we get

|d(Su, Tu)| ≤ 0,

which implies that Tu = v = Su, that is, v is a point of coincidence of T and S.

Further, using the similar arguments as of Theorem 2.1, it can be viewed that u

is the unique common fixed point of S and T . �

If the second and third terms inside the max in (5) are 0 in Theorem 2.8, we

obtain the following corollary which can be viewed as an extension of the results

obtained by Bryant [3] and Saluja [14] in complex valued metric space.

Corollary 2.9. Let (X, d) be a complex valued metric space and S, T : X → X be

two self mappings such that T n(X) ⊆ Sn(X) for n ∈ N and Sn(X) is a complete

subspace of X. Suppose that

d(T nx, T ny) � ad(Snx, Sny) (6)

for all x, y ∈ X, x 6= y, where a is a non negative constant such that a < 1. Then

T and S have a unique point of coincidence in X.
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Corollary 2.10. Let (X, d) be a complete complex valued metric space and T :

X → X be a self mappings such that for fixed n ∈ N

d(T nx, T ny) � ad(x, y)

for all x, y ∈ X, x 6= y, where 0 < a < 1. Then T has a unique fixed point in X.

Example 2.11. Let X = C and define a mapping d : C × C → C by d(z1, z2) =

|x1 − x2|+ i|y1 − y2| where z1 = x1 + iy1, z2 = x2 + iy2. Then (C, d) is a complex

valued metric space. Now define T : C→ C as follows

T (x+ iy) =



0, if x, y ∈ Q

i, if x, y ∈ Qc

1, if x ∈ Qc, y ∈ Q

1 + i, if x ∈ Q, y ∈ Qc

Note that, for x =
1√
5

and y = 1 we obtain the following

d

(
T (

1√
5

), T (1)

)
= d(1, 0) � µd

(
1√
5
, 1

)
=

µ√
5

which implies that 1 ≤ µ√
5
⇒
√

5 ≤ µ which is a contradiction to the fact that

µ < 1. However, one can note that T 2(z) = 0 for all z. So

0 = d(T 2(z1), T
2(z2)) � µd(z1, z2)

which shows that T 2 satisfies all the conditions Corollary 2.10. Hence z = 0 is a

unique fixed point of T .

Example 2.12. Let X = {0, 1, 2} and define a partial order � as x � y iff x ≥ y.

Let the complex valued metric d be given as follows:

d(x, y) = |x− y|(1 + i) ∀x, y ∈ X

and S, T : X → X as

T (0) = 0, T (1) = 1, T (2) = 1 and S(0) = 0, S(1) = 0, S(2) = 2.
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Case 1: If x = 0, y = 1, then it can be easily seen that (3) and other conditions of

Theorem 2.1 are satisfied.

Case 2: If x = 0, y = 2, then

d(T (0), T (2)) = (1 + i) ≤ µ2(1 + i),

which implies that (3) and other conditions of Theorem 2.1 are satisfied for 1/2 ≤

µ < 1.

Case 3: Taking x = 1, y = 2, implies that (3) and other conditions of Theorem 2.1

are satisfied. Hence, 0 ∈ X is a unique common fixed point of S and T.
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