
J. Computing & Int. Systems (2017) 10–14 10

O
ri

g
in

a
l R

e
se

a
rc

h
 A

rt
ic

le

Journal of Computing and Intelligent Systems

 Journal homepage: www.shcpub.edu.in

 A Novel Cognitive Complexity Metric for Inheritance Factor

 N. Vijayaraj #1, T.N. Ravi*2

Received on 31st Mar 2017, Accepted on 05th May 2017

Abstract — The complexity of Object Oriented (OO) software

is often measured with the intra-inter relationship within the

classes of a module. The more the classes are related, the more

the occurrence of complexity is. Inheritance concepts are one

of the most widely used and inevitable feature of OO

programming that often enhances the possibility of method

reuse and module extensibility. However, a module designed

with high quotient of inherited classes increases the coupling

factor of the module which lets a modification and

understanding of one class pre-requisites the knowledge of

other related classes. The assessment of coupling complexity

exists in the inherited classes is very much useful in the

evaluation of the overall software. Hence, in this paper, a

Cognitive Complexity Inheritance Metric (CCIM) is proposed to

define the complexity of inherited classes in a module in terms

of understandability and modifiability. The metric is validated

against both empirical and experimental evaluations where

the results clearly highlight the cognitive complexity of

inherited classes in software modules.

 Keywords: OO metric, coupling, CCIM, Complexity metrics

1 INTRODUCTION

The basic notion of software metrics is to assess the
quality of software products. Software metrics aids as a tool
to control software complexity. The metrics help the
developer to observe the weaknesses of developed software
there by valuing the quality of the software. Hence, software
metrics are considered to be an indispensable task in the
course of software development life cycle for achieving high
qualitative software. In the present decades, almost all
software projects are developed using Object-Oriented (OO)
programming languages because of their salient features
like as modularity, reusability and extendibility [1]. Thus,
the analysis on the quality of OO programming is also an
inevitable process and is highly achievable through OO
software metrics.

Software complexity metrics are yet another branch of

software metrics that attempt to measure the effort or
degree of criticality evolved in understanding or
comprehending the software code based on the three
fundamental factors of input, process and output. Though
the importance of software complexity metrics in software
maintainability and understandability is high, the majorityof

software complexity metrics that have been proposed for
procedural programming is still being used for assessing the
complexity OO programming [2]. Therefore, the present
situation is in need of the proposal of newer cognitive
complexity metric suite for OO languages.

This paper is proposed with an intention of introducing
a novel cognitive complexity inheritance metric CCIM for
understanding and comprehending the complexity exists in
the inheritance concepts. CCIM elucidates the cognitive
complexity value of inherited classes where the high CCIM
value denotes lower complexity and in contrast the lower
CCIM value denotes that the module consists of high
complexity. The remaining section of the paper is organized
as follows: Section II consists of the review of literature,
section III entails of the methodology and section IV contains
the empirical validation of the metric, section V explicates the
experimental validation of CCIM and finally section VI
concludes the findings of the paper.

2 RELATED WORK

A. Cognitive Weighted Response for a Class (CWRFC)
CWRFC metric is used for measuring the complexity

involved in message passing [3]. Supposing if a class holds ‘n’
number of response sets CWRFC calculates the complexity of
the class using the response set complexity as shown in
equation 1.

 𝐶𝑊𝑅𝐹𝐶 = ∑ 𝑅𝑆𝐶𝑖
𝑛
𝑖=1 … (1)

Where RSC denotes the response set complexity, which is
calculated by summing the set of all m methods in a class and
set of R methods called by any of those methods.

 𝑅𝑆𝐶 = ∀𝑖𝑅𝑖 + 𝑀 … (2)
As per message passing, the methods of the classes are

segmented into two as, Methods With Arguments (MWA) and
methods without arguments (MOA). MOA is also referred as
Default Function (DF). The arguments of MWA can either be
passed through Pass By Value (PBV) or Pass By Reference
(PBR). Hence, R can be computed using the formula shown in
equation 3.

𝑅 = 𝐷𝐹 × (𝐶𝑊𝑓 + 𝑊𝐹𝑑) + 𝑃𝐵𝑉 × (𝐶𝑊𝑓 + 𝑊𝐹𝑣) + 𝑃𝐵 × (𝐶𝑊𝑓 + 𝑊𝐹𝑟)

 … (3)

* Corresponding author: E-mail: vijay_sjctni@yahoo.co.in,

 proftnravi@gmail.com

1 Assistant Professor, Dept. of Computer Science, Srimad
 Andavan Science College, Tamilnadu, India
2 Assistant Professor, Dept. of Computer Science, E.V.R College,
 Tamilnadu , India

www.shcpub.edu.in

ISSN: 2456 - 9496

http://www.shcpub.edu.in/
http://www.shcpub.edu.in/

N. Vijayaraj et.al 11 | J. Computing & Int. Systems (2017) 10–14

www.shcpub.edu.in

O
ri

g
in

a
l R

e
se

a
rc

h
 A

rt
ic

le

where, DF is the total number of default functions
PBV is the total number of Pass By Value Function Call
Statements
PBR is the total number of Pass By Reference Function Call
Statements
CWf is the CWs of the Function Call Statement
WFd is the Weighting Factor of the DFCS
WFv is the Weighting Factor of the PBV statements
WFr is the Weighting Factor of the PBR statements

B. Cognitive Weighted Coupling Between Objects (CWCBO)

The motivation for defining CWCBO metric is to elucidate
the complexity involved with coupling of classes by
considering the different types of coupling such as control,
data, interface and global couplings [4]. The unnecessary
object coupling increases the complexity the chances of
system exploitation. CWCBO can be calculated using the
equation 4.

𝐶𝑊𝐶𝐵𝑂 = ((𝐶𝐶 × 𝑊𝐹𝐶𝐶) + (𝐺𝐷𝐶 × 𝑊𝐹𝐺𝐷𝐶) + (𝐼𝐷𝐶 × 𝑊𝐹𝐼𝐷𝐶) + (𝐷𝐶 ×
𝑊𝐹𝐷𝐶) + (𝐿𝐶𝐶 × 𝑊𝐹𝐿𝐶𝐶) … (4)

Where
CC is the total number of modules that contains Control
Coupling
WFCC is the Weighting Factor of Control Coupling
GDC is the count of Global Data Coupling
WFGDC is the Weighting Factor of Global Data Coupling and its
weight is given as 1
IDC is the count of Internal Data Coupling
WFIDC is the Weighting Factor of Internal Data Coupling and
its weight is given as 2
DC is the count of Data Coupling
WFDC is the Weighting Factor of Data Coupling and its weight
is given as 3
LCC is count of Lexical Content Coupling
WFLCC is the Weighting Factor of Lexical Content Coupling
and its weight is given as 4

C. Cognitive Weighted Polymorphism Factor (CWPF)

Thamburaj et al. [5] have proposed CWPF. The goal of
CWPF metric is to evaluate the complexity of software with
respect to three types of polymorphisms such as pure, static
and dynamic polymorphisms. The metric calculates the
cognitive complexity arising from the efforts needed to
comprehend the different types of polymorphism involved in
the software rather than calculating only the architectural
complexity of the polymorphism which is shown in equation
5

𝐶𝑊𝑃𝐹 =
∑ 𝐶𝑊𝑀𝑜(𝐶𝑖)𝑇𝐶

𝑖=1

∑ [𝑀𝑛(𝐶𝑖)× 𝐷𝐶(𝐶𝑖)]×𝐴𝐶𝑊𝑇𝐶
𝑖=1

 … (5)

Where, CWMo(Ci) is the number of overriding methods in class
Ci
DC(Ci) is the number of children of class Ci
TC is the total number of classes. The calculation of ACW is
done by the equation 6.

𝐴𝐶𝑊 = (𝐶𝑊𝑃𝑃 + 𝐶𝑊𝑆𝑃 + 𝐶𝑊𝐷𝑃) … (6)

Where
CWPP is the cognitive weight of pure polymorphism
CWSP is the cognitive weight of static polymorphism

 CWDP is the cognitive weight of dynamic polymorphism

D. Cognitive Weighted Attribute Hiding Factor (CWAHF)

CWAHF metric enhances cognitive perspective on the
visibility of different types of attributes which are commonly
divided into private, protected and public [6]. Private
arguments are the arguments that are fully invisible,
protected means partially visible and public means fully
visible. The default visibility comes under the package
private scope and does not have any keyword. The equations
7, 8 and 9 denote the calculation of CWAHF

𝐶𝑊𝐴𝐻𝐹 =
∑ 𝐴ℎ(𝐶𝑖)𝑇𝐶

𝑖=1

∑ 𝐴ℎ(𝐶𝑖)+∑ 𝐴𝑣(𝐶𝑖)𝑇𝐶
𝑖=1

𝑇𝐶
𝑖=1

 … (7)

∑ 𝐴ℎ(𝐶𝑖)
𝑇𝐶
𝑖=1 = ∑ 𝐴𝑝(𝐶𝑖) × 𝐶𝑊𝑝𝑎 + 𝐴𝑑(𝐶𝑖) × 𝐶𝑊𝑑𝑎 + 𝐴𝑡(𝐶𝑖) × 𝐶𝑊𝑡𝑎

𝑇𝐶
𝑖=1 … (8)

∑ 𝐴𝑣(𝐶𝑖)𝑇𝐶

𝑖=1 = ∑ 𝐴𝑢(𝐶𝑖)𝑇𝐶
𝑖=1 × 𝐶𝑊𝑢𝑎 … (9)

Ap(Ci) is the number of private arguments
CWpa is the cognitive weight of private arguments
Ad(Ci) is the number of default arguments
CWda is the cognitive weight of default arguments
At(Ci) is the number of protected arguments
CWta is the cognitive weight of protected arguments
Au(Ci) is the number of public arguments
CWua is the cognitive weight public argument

3 METHODOLOGY

Inheritance plays a major role in the complexity of a
module. Though, the concepts of inheritance enhance
reusability and extendibility, the module with high quotient
of inherited classes in fact increases the complexity. So far
there is no such metric that assesses the complexity involved
with inheritance which is a motivating factor of the paper.
To start with the cognitive complexity weight of the leaf
node is initially set to 1 and has been increased sequentially
when the tree is traversed from leaf to root nodes as the
conceptualization of successor class requires the knowledge
of the predecessor classes. The accumulation of the cognitive
weights of all leaf nodes depicts the total cognitive
complexity of the inheritance tree which is then divides the
total number inherited classes in the module. The cognitive
complexity weight of the leaf nodes can be derived using
equation 10 as follows

𝐶𝐶𝑊𝐿𝐹 = ∑ 𝑁𝑁𝑅𝑚
𝑖=1 … (10)

Where
i represents the current leaf node
m represents the total number of leaf nodes
NNR is the Number of nodes to the root
𝐶𝐶𝑊𝐿𝐹is the accumulation of cognitive weights of the leaf
nodes

The cognitive complexity weight obtained using
equation is used to identify the overall cognitive complexity
of the inherited classes in the module using the following
equation 11.

𝐶𝐶𝐼𝑀 =
𝑛

𝐶𝐶𝑊𝐿𝐹
 … (11)

Where
n is the total number of inherited classes

http://www.shcpub.edu.in/

N. Vijayaraj et.al 12 | J. Computing & Int. Systems (2017) 10–14

www.shcpub.edu.in

 𝐶𝐶𝑊𝐿𝐹is the accumulation of cognitive weights of the leaf
 nodes
 CCIM is the cognitive complexity inheritance metric

 4 ILLUSTRATION

As an illustration two modules with different pattern of
inherited modules are defined to calibrate the complexity of
inheritance and shown in Figure 1.

Figure 1.

a. Multilevel Inheritance Module b. Hybrid Inheritance Module

The leaf node of Multilevel Inheritance Module is c. Hence,

the CCWLF of Multilevel Inheritance Module is calculated by
traversing the tree from C to A which requires the
understanding of class A requires the understanding of class
B and C which is 3.

𝐶𝐶𝑊𝐿𝐹(𝑀𝑜𝑑𝑢𝑙𝑒 1) = ∑ 𝑁𝑁𝑅

1

𝑖=1

= 3

Since, there is only one leaf node in Multilevel Inheritance
Module and the number of nodes from the leaf C to root A is 3,
the CCWLF of Multilevel Inheritance Module is 3. The CCIM
value of module is calculated as

𝐶𝐶𝐼𝑀 =
𝑛

𝐶𝐶𝑊𝐿𝐹(𝑀𝑜𝑑𝑢𝑙𝑒 1)
=

3

3
= 1

Likewise the CCIM calibration of Hybrid Inheritance Module is
calculated below. The total number of leaf nodes in Hybrid
Inheritance Module is 3 such as D, E and C, Hence the value of
m is 3. The number of nodes from D to root A is 3, E to A is 3
and C to A is 2. Hence, the cognitive complexity weight of the
leaf nodes of Hybrid Inheritance Module is 8.

𝐶𝐶𝑊𝐿𝐹(𝑀𝑜𝑑𝑢𝑙𝑒 2) = ∑ 𝑁𝑁𝑅

3

𝑖=1

= 8

CCIM of Hybrid Inheritance Module is the fraction of the
number of inherited classes with the cognitive complexity
weight of the leaf nodes as described below

𝐶𝐶𝐼𝑀 =
𝑛

𝐶𝐶𝑊𝐿𝐹(𝑀𝑜𝑑𝑢𝑙𝑒 1)
=

5

8
= 0.625

5 COMPARISON OF DIT WITH CCIM
 The proposed CCIM metric is compared with its base
Depth Inheritance Tree (DIT) metric to highlight the cognitive
complexity of inheritance concepts in object oriented metrics.
DIT measures only the number of ancestors classes that affect
the measured classes [9]. In case of multiple inheritance, the
metric gives the longest path from the class to the root class
which does not indicate the number of classes involved where
the complexity of the class actually lies.

DIT of Multilevel Inheritance Module is 3 and Hybrid
Inheritance Module is also 3, whereas the cognitive
complexity of Multilevel Inheritance Module and Hybrid
Inheritance Module is 1 and 0.625. Table 1 depicts the
metric values of DIT and CCIM respectively.

TABLE 1
Comparison of DIT vs CCIM

Program DIT CCIM

Multilevel Inheritance Module 3 1

Hybrid Inheritance Module 3 0.625

 When comparing to Multilevel Inheritance Module,
Hybrid Inheritance Module has the highest complexity with
more number of classes. But, the DIT metric value shows the
same value for both the modules. On the other hand, the
metric values of CCIM differ from each other where the value
1 of Multilevel Inheritance Module designates that the
complexity is low and 0.625 in Hybrid Inheritance Module is
comparatively complex than Module1. The pictorial
representation of the comparisons of DIT and CCIM is
depicted in Figure 2.

Figure 2. Comparison of DIT Vs CCIM

6 THEORETICAL VALIDATION
 Software metric has to satisfy certain validation
properties for proving their usefulness in real time
implementations. Among the various software metric
validations, the properties suggested by Basili and Reiter is
very much sensitive to the evaluation of software [7] metric,
as it observes the external differences in software
development. The properties also exploit the intuitive
notions of the inherent characteristics of the software metric
and the differences between the artifacts.

 Weyuker has also presented a formal list of nine
properties that evaluates the characteristics of any novel or
existing software metrics [8]. The properties of Weyuker
denote the important notions that the software metric
should possess such as non-coarseness, granularity,
interactions, permutations, monotonicity, and uniqueness
etc. The objective of this section is to validate the proposed
CCIM metric against the Weyuker’s nine properties to prove
the validity of the metric.

 Several properties of Weyuker’s may even significantly
helpful in classifying the complexity of the software. The
properties of the Weyuker’s are discussed below:

3

1

3

0.625
0

1

2

3

4

DIT CCIM

C
o

d
e

 C
o

m
p

le
x

it
y

Software Metrics

Comparison of DIT Vs CCIM

Multilevel
Inheritance
Module

Hybrid
Inheritance
Module

A

B

C

A

B
C

D E

http://www.shcpub.edu.in/

N. Vijayaraj et.al 13 | J. Computing & Int. Systems (2017) 10–14

www.shcpub.edu.in

Property1

Non-coarseness
Not all modules have the same metric value. If the software
consists of ‘n’ number of modules, CCIM does not result the
same metric value for all ‘n’ modules. Hence property 1 is
satisfied by CCIM.

Property 2

Granularity
Let ‘c’ be the finite number of modules having the same metric
value. If the software consists of ‘n’ number of modules, the
metric value provided CCIM is for ‘c’ finite modules. Thus,
property 2 is satisfied by CCIM.

 Property 3

Non-uniqueness
It is acceptable if the number of modules in the software has
the same metric value. CCIM satisfies this property, if the
inheritance tree between classes within the modules is same.

Property 4

Design details are important
This property states that if two modules perform the same
functionality, but vary in terms of implementation design,
then the software metric may result different value for each
module. CCIM affirms this property if the classes in the
modules are represented with different inheritance models.
Thus, CCIM satisfies property 4.

 Property 5

Monotonicity
If two modules M and N are concatenated as M+N, then the
complexity of the concatenated class must be larger than the
complexity of the discrete modules M and N. CCIM affirms this
property when the modules are concatenated with
inheritance relationship. Thus property 5 is satisfied with
CCIM.

Property 6

Non-equivalence of interaction
If a module O is added with two existing modules M and N
having the same complexity, the complexity of the newly
added modules O+M may different from the complexity of
O+N. CCIM for sure produces a different complexity values for
both modules M+O and N+O since O is dependent on the
fitness of inheritance with the existing modules M and N. Thus
CCIM affirms property 6.

Property 7

Permutation
If the program bodies M and N are permutated in such a way
that N is formed by changing the order of statements of N then
(|M|=|N|). CCIM does not abide property 7 it is not suitable for
object oriented metrics.

Property 8

Renaming of modules does not affect the complexity. If the
name of module M is changed as N then the complexity of M
and N must be same as |M|=|N|. CCIM does not have any
influence over the complexity of renaming the modules,
Thus, CCIM satisfies property 8.

Property 9

Interaction increases complexity
Let O be the new class combined from two classes M and N,
then the property states the complexity of the new class may
be greater than the sum of complexity of two individual
classes M+N. This property does not satisfied with CCIM as
the complexity of combined modules could be possibly equal
than the individual complexity but not greater. Summary of
the CCIM validation is described in Table 2.

TABLE 2.

Summary of CCIM validation with Weyuker’s
Properties

Metric P1 P2 P3 P4 P5 P6 P7 P8 P9
CCIM Y Y Y Y Y Y N Y N

7 CONCLUSION
Software cognitive complexity metrics on inheritance

factor in object-oriented concepts is one of the essential
factors to identify the quality of software in terms of
maintainability. This paper proposes new software metric
called CCIM for assessing the level of cognitive complexity
involved in the inherited classes in the module. The results
of the CCIM show that the low CCIM value of increases to
higher cognitive complexity of the module and vice-versa.
Moreover, the higher complexity in software leads to more
cost expensive and less maintainability of software. The
assurance of less complexity software is of been great
interest to researchers since the early days of development.
Hence, the proposed CCIM metric will be helpful for the
developers to identify the flaws in their program in the
development stage itself.

REFERENCES
[1] Misra, Sanjay, Murat Koyuncu, Marco Crasso, Cristian Mateos, and

Alejandro Zunino. "A suite of cognitive complexity metrics." In
International Conference on Computational Science and Its
Applications, pp. 234- 247. Springer Berlin Heidelberg, 2012.

[2] Dr. L.Arockiam and A.Aloysius, “Attribute Weighted Class
Complexity: A New Metric for Measuring Cognitive Complexity of
OO Systems”, International Journal of Computer, Electrical,
Automation, Control and Information Engineering Vol:5, No:10,
2011,

[3] Dr. L.Arockiam and A.Aloysius, “Maintenance Effort Prediction
Model Using Cognitive Complexity Metrics”, International Journal of
Advanced Research in Computer Science and Software Engineering,
Volume 3, Issue 11, November 2013.

[4] Dr. L.Arockiam and A.Aloysius, “Coupling Complexity Metric: A
Cognitive Approach”, I.J. Information Technology and Computer
Science, 2012

[5] T. Francis Thamburaj, A. Aloysius, “Cognitive Weighted
Polymorphism Factor:A Comprehension Augmented Complexity
Metric” , International Journalof Computer, Electrical,
Automation, Control and Information Engineering Vol:9, No:11,
2015.

http://www.shcpub.edu.in/

N. Vijayaraj et.al 14 | J. Computing & Int. Systems (2017) 10–14

www.shcpub.edu.in

[6] T. Francis Thamburaj, A. Aloysius,” Cognitive Perspective Of Attribute
Hiding Factor Complexity Metric”, International Journal Of Engineering
And Computer Science ISSN: 2319-7242 Volume 4 Issue 11 Nov 2015

[7] Basili, Victor R., and Robert W. Reiter Jr. "Evaluating automatable
measures of software development." In Proceedings on Workshop on
Quantitative Software Models, pp. 107-116. 1979.

[8] Michael, James Bret, Bernard J. Bossuyt, and Byron B. Snyder. "Metrics
for measuring the effectiveness of software-testing tools." In Software
Reliability Engineering, 2002. ISSRE 2003. Proceedings. 13th
International Symposium on, pp. 117-128. IEEE, 2002.

[9] Sheldon, Frederick T., Kshamta Jerath, and Hong Chung. "Metrics for
maintainability of class inheritance hierarchies." Journal of Software
Maintenance and Evolution: Research and Practice 14, no. 3 (2002):
147-160.

http://www.shcpub.edu.in/

