

Journal of Computational Mathematica

Journal homepage: www.shcpub.edu.in

Equitable Coloring of Some Cycle Related Graphs

¹S. K. Vaidya, and ²Rakhimol V. Isaac

Received on 15 Jan 2017, Accepted on 08 April 2017

ABSTRACT. The graph is called *equitably k-colorable* if the vertex set of the graph can be partitioned into k non empty independent sets V_1, V_2, \ldots, V_k such that $||V_i| - |V_j|| \leq 1$, for every i and j. The smallest integer k for which the graph G is equitably k- colorable is called the equitable chromatic number of graph G and is denoted by $\chi_e(G)$. If the connected graph G is neither a complete graph nor an odd cycle then the Equitable Coloring Conjecture (ECC) states that $\chi_e(G) \leq \Delta(G)$. In this work we investigate the equitable chromatic number of some cycle related graphs like middle graph, shadow graph and splitting graph of cycle.

Keywords: Equitable coloring, Equitable chromatic number, Middle graph, Shadow graph, Splitting graph.

AMS Subject classification: 05C15, 05C76

1. INTRODUCTION

We begin with finite, connected, simple and undirected graph with vertex set V(G)and edge set E(G). For any undefined term in graph theory we refer to Bondy and Murty [1]. A proper k-coloring of a graph G is a function $c : V(G) \to \{1, 2, ..., k\}$ such that $c(u) \neq c(v)$ for all $uv \in E(G)$. The chromatic number $\chi(G)$ is the minimum number k for which G admits proper k-coloring. There are many variants of proper coloring like b-coloring, total coloring, dominator coloring, equitable coloring etc. The present work is intended to report some investigations on equitable coloring of graph.

The graph G is called *equitably* k-colorable if the vertex set of G can be partitioned into k non empty independent sets V_1, V_2, \ldots, V_k such that $||V_i| - |V_j|| \le 1$, for every

¹*Corresponding Author: E-mail: samirkvaidya@yahoo.co.in, rakhiisaac@yahoo.co.in

^{1,2}Department of Mathematics, Saurashtra University, Rajkot - 360005, Gujarat, India

²Department of Mathematics, Christ College, Rajkot - 360005, Gujarat, India.

i and *j*. The smallest integer *k* for which *G* is equitably *k*- colorable is called the equitable chromatic number of *G* and is denoted by $\chi_e(G)$. If the connected graph *G* is neither a complete graph nor an odd cycle then the Equitable Coloring Conjecture (ECC) states that $\chi_e(G) \leq \Delta(G)$ [8, 6].

The notion of equitable coloring is first introduced by Meyer [8]. The equitable coloring of trees and bipartite graphs are studied by Chen et al [2] and Lih et al [7] respectively. The equitable coloring of graph products is discussed in [4].

Proposition 1.1. [5] If G and G' are simple graphs on the same set of vertices and $E(G) \subseteq E(G')$, then $\chi_e(G) \leq \chi_e(G')$.

Proposition 1.2. [3] If G contains a clique of order n then $\chi(G) \ge n$.

Proposition 1.3. [8] Since an equitable coloring is a proper coloring, $\chi_e(G) \ge \chi(G)$

2. Main Results

Definition 2.1. The middle graph M(G) of a graph G is the graph whose vertex set $V(G) \cup E(G)$ in which two vertices are adjacent if and only if either they are adjacent edges of G or one is a vertex of G and the other is an edge incident on it.

Theorem 2.2. $\chi_e(M(C_n)) = 3$, for all *n*.

Proof. Let $V(C_n) = \{v_1, v_2, \dots, v_n\}$ and $E(C_n) = \{e_1, e_2, \dots, e_n\}$ where $e_i = v_i v_{i+1}$; $1 \le i \le n-1$ and $e_n = v_n v_1$. By the definition of middle graph, $V(M(C_n)) = V(C_n) \cup E(C_n)$ and $E(M(C_n)) = \{v_i e_i; 1 \le i \le n\} \cup \{e_i v_{i+1}; 1 \le i \le n-1\} \cup \{e_n v_1\} \cup \{e_i e_{i+1}; 1 \le i \le n-1\} \cup \{e_n e_1\}$. Thus $|V(M(C_n))| = 2n$ and $|E(M(C_n))| = 3n$.

As $M(C_n)$ contains a clique of order 3, $\chi(M(C_n)) \ge 3$ according to Proposition 1.2 and so,

$$\chi_e(M(C_n)) \ge 3. \tag{1}$$

<u>Case 1</u>: when $n \equiv 0 \pmod{3}$:

Consider the color function $c: V(M(C_n)) \to \mathbb{N}$ as

 $c(v_{3k}) = c(e_{3k-2}) = 1; c(v_{3k-1}) = c(e_{3k}) = 3; c(v_{3k-2}) = c(e_{3k-1}) = 2$ where

 $k = 1, 2, \ldots, \frac{n}{2}.$ Now, partition the vertex set $V(M(C_n))$ as $V_1 = \{e_1, e_4, \dots, e_{n-2}, v_3, v_6, v_9, \dots, v_n\},\$ $V_2 = \{e_2, e_5, e_8, \dots, e_{n-1}, v_1, v_4, v_7, \dots, v_{n-2}\},\$ $V_3 = \{e_3, e_6, e_9, \dots, e_n, v_2, v_5, v_8, \dots, v_{n-1}\}.$ Clearly, V_1, V_2 and V_3 are independent sets of $M(C_n)$. Also, $|V_1| = |V_2| = |V_3| = \frac{2n}{3}$. Thus, $\chi_e(M(C_n)) \leq 3$. Case 2: when $n \equiv 1 \pmod{3}$: Consider the color function $c: V(M(C_n)) \to \mathbb{N}$ as $c(v_n) = 1, c(e_n) = 2, c(v_1) = 3, c(v_{3k+1}) = 2; k = 1, 2, \dots, \frac{n-4}{3}.$ $c(v_{3k}) = c(e_{3k-2}) = 1; c(e_{3k-1}) = 2; c(e_{3k}) = c(v_{3k-1}) = 3; k = 1, 2, \dots, \frac{n-1}{2}$ Now, partition the vertex set $V(M(C_n))$ as $V_1 = \{e_1, e_4, e_7, \dots, e_{n-3}, v_3, v_6, v_9, \dots, v_{n-1}, v_n\},\$ $V_2 = \{e_2, e_5, e_8, \dots, e_{n-2}, e_n, v_4, v_7, v_{10}, \dots, v_{n-3}\}.$ $V_3 = \{e_3, e_6, e_9, \dots, e_{n-1}, v_1, v_2, v_5, v_8, \dots, v_{n-2}\}.$ Now, $|V_1| = \frac{n-1}{3} + \frac{n-1}{3} + 1 = \frac{2n+1}{3}$, $|V_2| = \frac{n-1}{3} + 1 + \frac{n-4}{3} = \frac{2n-2}{3}$, and $|V_3| = \frac{n-1}{3} + 1 + \frac{n-1}{3} = \frac{2n+1}{3}.$ Clearly, V_1, V_2 and V_3 are independent sets of $M(C_n)$. Also, $|V_1| = |V_3|$ and $|V_1| - |V_2| = |V_2| - |V_3| = \frac{2n+1}{2} - (\frac{2n-2}{2}) = 1$. It holds the inequality $||V_i| - |V_i|| \le 1$, for every *i* and *j*. Thus, $\chi_e(M(C_n)) \le 3$. Case 3: when $n \equiv 2 \pmod{3}$: Consider the color function $c: V(M(C_n)) \to \mathbb{N}$ as $c(v_1) = 3$; $c(e_{3k-2}) = 1$; $c(e_{3k-1}) = 2$; $c(v_{3k-1}) = 3$ where $k = 1, 2, \ldots, \frac{n+1}{3}$. $c(v_{3k}) = 1$; $c(v_{3k+1}) = 2$; $c(e_{3k}) = 3$ where $k = 1, 2, \dots, \frac{n-2}{3}$. Now, partition the vertex set $V(M(C_n))$ as $V_1 = \{e_1, e_4, e_7, \dots, e_{n-1}, v_3, v_6, v_9, \dots, v_{n-2}\},\$ $V_2 = \{e_2, e_5, e_8, \dots, e_n, v_4, v_7, v_{10}, \dots, v_{n-1}\},\$ $V_3 = \{e_3, e_6, e_9, \dots, e_{n-2}, v_1, v_2, v_5, v_8, \dots, v_n\}.$

Now, $|V_1| = \frac{n+1}{3} + \frac{n-2}{3} + 1 = \frac{2n-1}{3}, |V_2| = \frac{n+1}{3} + \frac{n-2}{3} = \frac{2n-1}{3}$, and $|V_3| = \frac{n-2}{3} + 1 + \frac{n+1}{3} = \frac{2n+2}{3}$.

Clearly, V_1, V_2 and V_3 are independent sets of $M(C_n)$. Also, $|V_1| = |V_2|$ and $||V_1| - |V_3| \models ||V_2| - |V_3| \mid = |\frac{2n-1}{3} - (\frac{2n+2}{3})| = 1$. It holds the inequality $||V_i| - |V_j|| \le 1$, for every *i* and *j*. Thus, $\chi_e(M(C_n)) \le 3$.

Thus,

$$\chi_e(M(C_n)) \le 3, for all n.$$
(2)

Therefore from (1) and (2) we get, $\chi_e(M(C_n)) = 3$.

Definition 2.3. The shadow graph $D_2(G)$ of a connected graph G is constructed by taking two copies of G, say G' and G''. Join each vertex u' in G' to the neighbors of the corresponding vertex u'' in G''.

Theorem 2.4.

$$\chi_e(D_2(C_n)) = \begin{cases} 2, & n \text{ is even} \\ 3, & n \text{ is odd} \end{cases}$$

Proof. Let $V(C_n) = \{v_1, v_2, \ldots, v_n\}$ and $E(C_n) = \{e_1, e_2, \ldots, e_n\}$ where $e_i = v_i v_{i+1}$; $1 \leq i \leq n-1$ and $e_n = v_n v_1$. The shadow graph of C_n , $D_2(C_n)$, has two copies, say C'_n and C''_n , with $V(D_2(C_n)) = \{v'_i, v''_i; 1 \leq i \leq n\}$. In $D_2(C_n)$, $N(v'_i) = N(v''_i)$ and v'_i and v''_i are non adjacent vertices.

<u>Case 1</u>: when n is even:

Consider the color function $c: V(D_2(C_n)) \to \mathbb{N}$ as $c(v'_{2k-1}) = c(v''_{2k-1}) = 1$ and $c(v'_{2k}) = c(v''_{2k}) = 2$. Now, partition the vertex set of $D_2(C_n)$ as

$$V_1 = \{v'_1, v''_1, v'_3, v''_3, \dots, v'_{n-1}, v''_{n-1}\} \text{ and } V_2 = \{v'_2, v''_2, v'_4, v''_4, \dots, v'_n, v''_n\}.$$

Clearly, V_1 and V_2 are independent sets of $D_2(C_n)$ and $||V_1| - |V_2|| = 1$. It holds the inequality $||V_i| - |V_j|| \le 1$ for every pair (i, j). Thus $\chi_e(D_2(C_n)) = 2$.

<u>Case 2</u>: when n is odd:

As $D_2(C_n)$ contains an odd cycle, it is not a bipartite graph. So it is not possible to partition the vertex set of $D_2(C_n)$ into two independent sets. Therefore $\chi_e(D_2(C_n)) \neq 2$. Thus we have the following three subcases: Subcase 1: $n \equiv 0 \pmod{3}$:

Consider the color function $c: V(D_2(C_n)) \to \mathbb{N}$ as

$$c(v'_{3k-2}) = c(v''_{3k-2}) = 1;$$

 $c(v'_{3k-1}) = c(v''_{3k-1}) = 2;$

 $c(v'_{3k}) = c(v''_{3k}) = 3; \ k = 1, 2, \dots, \frac{n}{3}.$

Now, partition the vertex set of $D_2(C_n)$ as

 $V_1 = \{v'_{3k-2}, v''_{3k-2}\}, V_2 = \{v'_{3k-1}, v''_{3k-1}\} \text{ and } V_3 = \{v'_{3k}, v''_{3k}\}; k = 1, 2, \dots, \frac{n}{3}.$ Clearly, V_1, V_2 and V_3 are independent sets of $D_2(C_n)$. Also, $|V_1| = |V_2| = |V_3| = \frac{2n}{3}.$ Thus, $\chi_e(D_2(C_n)) = 3.$

Subcase 2: $n \equiv 1 \pmod{3}$:

Consider the color function
$$c: V(D_2(C_n)) \to \mathbb{N}$$
 as
 $c(v'_1) = c(v'_{n-2}) = 1; c(v'_{3k}) = c(v''_{3k}) = 1; k = 1, 2, \dots, \frac{n-4}{3}.$
 $c(v'_n) = 2, c(v'_{3k-1}) = 2; k = 1, 2, \dots, \frac{n-4}{3}.$
 $c(v'_n) = 2, c(v''_{3k-1}) = 2; k = 1, 2, \dots, \frac{n-4}{3}.$
 $c(v'_{n-1}) = 3, c(v'_{3k-2}) = 3; k = 1, 2, \dots, \frac{n-4}{3}.$
 $c(v''_{n-1}) = 3, c(v''_{3k-2}) = 3; k = 1, 2, \dots, \frac{n-4}{3}.$
Now, partition the vertex set of $D_2(C_n)$ as
 $V_1 = \{v'_1, v'_{n-2}, v'_{3k}, v''_{3k}; k = 1, 2, \dots, \frac{n-4}{3}\},$
 $V_2 = \{v'_n, v''_n, v'_{3k-1}(k = 1, 2, \dots, \frac{n-4}{3}), v''_{3k-1}(k = 1, 2, \dots, \frac{n-1}{3})\},$ and
 $V_3 = \{v'_{n-1}, v''_{n-1}, v'_{3k+1}(k = 1, 2, \dots, \frac{n-4}{3}), v''_{3k-2}(k = 1, 2, \dots, \frac{n-1}{3})\}.$
Clearly, V_1, V_2 and V_3 are independent sets of $D_2(C_n)$.

Also, $|V_1| = \frac{2n-2}{3}$, $|V_2| = \frac{2n+1}{3}$ and $|V_3| = \frac{2n+1}{3}$. Now, $|V_2| = |V_3|$ and $||V_1| - |V_2|| = |V_1| - |V_3| = |\frac{2n-2}{3} - (\frac{2n+1}{3})| = 1$. It holds the inequality $||V_i| - |V_j|| \le 1$, for every pair (i, j). Thus, $\chi_e(D_2(C_n)) = 3$.

Subcase 3: $n \equiv 2 \pmod{3}$:

Consider the color function $c: V(D_2(C_n)) \to \mathbb{N}$ as $c(v'_{3k-2}) = 1; \ k = 1, 2, \dots, \frac{n+1}{3}.$ $c(v''_{3k+1}) = 1; \ k = 1, 2, \dots, \frac{n-2}{3}$ $\begin{aligned} c(v_{3k-1}') &= c(v_{3k-1}'') = 2; \ k = 1, 2, \dots, \frac{n+1}{3}. \\ c(v_1'') &= 3; \ c(v_{3k}') = c(v_{3k}'') = 3; \ k = 1, 2, \dots, \frac{n-2}{3}. \\ \text{Now, partition the vertex set of } D_2(C_n) \text{ as} \\ V_1 &= \{v_1', v_4', v_7', \dots, v_{n-1}', v_4'', v_7'', \dots, v_{n-1}''\}, \\ V_2 &= \{v_2', v_5', v_8', \dots, v_n', v_2'', v_5'', \dots, v_n''\}, \\ V_3 &= \{v_3', v_6', \dots, v_{n-2}', v_1'', v_3'', v_6'', \dots, v_{n-2}''\}. \text{ Now, } V_1, V_2 \text{ and } V_3 \text{ are independent} \\ \text{sets of } D_2(C_n). \\ \text{Also, } |V_1| &= \frac{n+1}{3} + \frac{n-2}{3} = \frac{2n-1}{3}, \ |V_2| &= \frac{2(n+1)}{3} \text{ and } |V_3| = \frac{2(n-2)}{3} + 1 = \frac{2n-1}{3}. \end{aligned}$

Now, $|V_1| = |V_3|$ and $||V_2| - |V_3|| = ||V_2| - |V_1|| = |\frac{2n+2}{3} - (\frac{2n-1}{3})| = 1$. It holds the inequality $||V_i| - |V_j|| \le 1$, for every pair (i, j). Thus, $\chi_e(D_2(C_n)) = 3$.

Definition 2.5. The splitting graph S'(G) of a connected graph G is obtained by adding new vertex v' corresponding to each vertex v of G such that N(v) = N(v') where N(v) and N(v') are the neighborhood sets of v and v' respectively.

The following theorem can be proved by the arguments analogous to the previous Theorem 2.4.

Theorem 2.6.

$$\chi_e(S'(C_n)) = \begin{cases} 2, & n \text{ is even} \\ 3, & n \text{ is odd} \end{cases}$$

Proof. We have $V(S'(C_n)) = V(D_2(C_n))$ and $E(S'(C_n)) \subset E(D_2(C_n))$. Then by Proposition 1.1, $\chi_e(S'(C_n)) \leq \chi_e(D_2(C_n))$. Now, we can assign the same coloring as in $D_2(C_n)$ and hence, $\chi_e(S'(C_n)) = \chi_e(D_2(C_n))$.

3. Conclusion

The equitable chromatic number of some standard graphs like cycle, path, wheel etc are known. We have investigated the equitable chromatic number for the larger graphs such as $M(C_n), D_2(C_n)$ and $S'(C_n)$ obtained from cycle C_n .

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, London: Macmillan, 1976.

- [2] B. l. Chen and K. W. Lih, "Equitable Coloring of Trees", Journal of Combinatorial Theory, Series B, 61(1994), 83-87.
- [3] J. Clark and D.A. Holton, A First Look at Graph Theory, World Scientific, 1995.
- [4] H. Furmańczyk, "Equitable Coloring of Graph Products", Opuscula Mathematica, 26(1) (2006), 31-44.
- [5] K. Kaliraj, "On Equitable coloring of Graphs", Ph. D. Thesis, Anna University, Chennai, (2013).
- [6] T. Karthick, "Note on Equitable coloring of Graphs", Australian Journal of Combinatorics, 59(2) (2014), 251-259.
- [7] K. W. Lih and P. L. Wu, "On Equitable coloring of Bipartite Graphs", Discrete Mathematics, 151 (1996), 155-160.
- [8] W. Meyer, "Equitable Coloring", The American Mathematical Monthly, 80(8) (1973), 920-922.

www.shcpub.edu.in