

# Journal of Computational Mathematica 

Journal homepage: www.shcpub.edu.in

## Equitable Coloring of Some Cycle Related Graphs

${ }^{1}$ S. K. Vaidya, and ${ }^{2}$ Rakhimol V. Isaac

Received on 15 Jan 2017, Accepted on 08 April 2017


#### Abstract

The graph is called equitably $k$-colorable if the vertex set of the graph can be partitioned into $k$ non empty independent sets $V_{1}, V_{2}, \ldots, V_{k}$ such that $\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$, for every $i$ and $j$. The smallest integer $k$ for which the graph $G$ is equitably $k$ - colorable is called the equitable chromatic number of graph $G$ and is denoted by $\chi_{e}(G)$. If the connected graph $G$ is neither a complete graph nor an odd cycle then the Equitable Coloring Conjecture (ECC) states that $\chi_{e}(G) \leq \triangle(G)$. In this work we investigate the equitable chromatic number of some cycle related graphs like middle graph, shadow graph and splitting graph of cycle.


Keywords: Equitable coloring, Equitable chromatic number, Middle graph, Shadow graph, Splitting graph.
AMS Subject classification: 05C15, 05C76

## 1. Introduction

We begin with finite, connected, simple and undirected graph with vertex set $V(G)$ and edge set $E(G)$. For any undefined term in graph theory we refer to Bondy and Murty [1]. A proper $k$-coloring of a graph $G$ is a function $c: V(G) \rightarrow\{1,2, \ldots, k\}$ such that $c(u) \neq c(v)$ for all $u v \in E(G)$. The chromatic number $\chi(G)$ is the minimum number $k$ for which $G$ admits proper $k$-coloring. There are many variants of proper coloring like $b$-coloring, total coloring, dominator coloring, equitable coloring etc. The present work is intended to report some investigations on equitable coloring of graph.

The graph $G$ is called equitably $k$-colorable if the vertex set of $G$ can be partitioned into $k$ non empty independent sets $V_{1}, V_{2}, \ldots, V_{k}$ such that $\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$, for every

[^0]$i$ and $j$. The smallest integer $k$ for which $G$ is equitably $k$ - colorable is called the equitable chromatic number of $G$ and is denoted by $\chi_{e}(G)$. If the connected graph $G$ is neither a complete graph nor an odd cycle then the Equitable Coloring Conjecture (ECC) states that $\chi_{e}(G) \leq \triangle(G)$ [8, 6].

The notion of equitable coloring is first introduced by Meyer [8]. The equitable coloring of trees and bipartite graphs are studied by Chen et al [2] and Lih et al [7] respectively. The equitable coloring of graph products is discussed in [4].

Proposition 1.1. 5] If $G$ and $G^{\prime}$ are simple graphs on the same set of vertices and $E(G) \subseteq E\left(G^{\prime}\right)$, then $\chi_{e}(G) \leq \chi_{e}\left(G^{\prime}\right)$.

Proposition 1.2. 3] If $G$ contains a clique of order $n$ then $\chi(G) \geq n$.

Proposition 1.3. [8] Since an equitable coloring is a proper coloring, $\chi_{e}(G) \geq \chi(G)$

## 2. Main Results

Definition 2.1. The middle graph $M(G)$ of a graph $G$ is the graph whose vertex set $V(G) \cup E(G)$ in which two vertices are adjacent if and only if either they are adjacent edges of $G$ or one is a vertex of $G$ and the other is an edge incident on it.

Theorem 2.2. $\chi_{e}\left(M\left(C_{n}\right)\right)=3$, for all $n$.
Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(C_{n}\right)=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ where $e_{i}=v_{i} v_{i+1}$; $1 \leq i \leq n-1$ and $e_{n}=v_{n} v_{1}$. By the definition of middle graph, $V\left(M\left(C_{n}\right)\right)=$ $V\left(C_{n}\right) \cup E\left(C_{n}\right)$ and $E\left(M\left(C_{n}\right)\right)=\left\{v_{i} e_{i} ; 1 \leq i \leq n\right\} \cup\left\{e_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{e_{n} v_{1}\right\} \cup$ $\left\{e_{i} e_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{e_{n} e_{1}\right\}$. Thus $\left|V\left(M\left(C_{n}\right)\right)\right|=2 n$ and $\left|E\left(M\left(C_{n}\right)\right)\right|=3 n$.

As $M\left(C_{n}\right)$ contains a clique of order $3, \chi\left(M\left(C_{n}\right)\right) \geq 3$ according to Proposition 1.2 and so,

$$
\begin{equation*}
\chi_{e}\left(M\left(C_{n}\right)\right) \geq 3 \tag{1}
\end{equation*}
$$

Case 1: when $n \equiv 0(\bmod 3)$ :
Consider the color function $c: V\left(M\left(C_{n}\right)\right) \rightarrow \mathbb{N}$ as
$c\left(v_{3 k}\right)=c\left(e_{3 k-2}\right)=1 ; c\left(v_{3 k-1}\right)=c\left(e_{3 k}\right)=3 ; c\left(v_{3 k-2}\right)=c\left(e_{3 k-1}\right)=2$ where
$k=1,2, \ldots, \frac{n}{3}$.
Now, partition the vertex set $V\left(M\left(C_{n}\right)\right)$ as

$$
\begin{aligned}
V_{1} & =\left\{e_{1}, e_{4}, \ldots, e_{n-2}, v_{3}, v_{6}, v_{9}, \ldots, v_{n}\right\}, \\
V_{2} & =\left\{e_{2}, e_{5}, e_{8}, \ldots, e_{n-1}, v_{1}, v_{4}, v_{7}, \ldots, v_{n-2}\right\}, \\
V_{3} & =\left\{e_{3}, e_{6}, e_{9}, \ldots, e_{n}, v_{2}, v_{5}, v_{8}, \ldots, v_{n-1}\right\} .
\end{aligned}
$$

Clearly, $V_{1}, V_{2}$ and $V_{3}$ are independent sets of $M\left(C_{n}\right)$. Also, $\left|V_{1}\right|=\left|V_{2}\right|=\left|V_{3}\right|=\frac{2 n}{3}$. Thus, $\chi_{e}\left(M\left(C_{n}\right)\right) \leq 3$.

Case 2: when $n \equiv 1(\bmod 3)$ :
Consider the color function $c: V\left(M\left(C_{n}\right)\right) \rightarrow \mathbb{N}$ as

$$
\begin{aligned}
& c\left(v_{n}\right)=1, c\left(e_{n}\right)=2, c\left(v_{1}\right)=3, c\left(v_{3 k+1}\right)=2 ; k=1,2, \ldots, \frac{n-4}{3} . \\
& c\left(v_{3 k}\right)=c\left(e_{3 k-2}\right)=1 ; c\left(e_{3 k-1}\right)=2 ; c\left(e_{3 k}\right)=c\left(v_{3 k-1}\right)=3 ; k=1,2, \ldots, \frac{n-1}{3} .
\end{aligned}
$$

Now, partition the vertex set $V\left(M\left(C_{n}\right)\right)$ as

$$
\begin{aligned}
V_{1} & =\left\{e_{1}, e_{4}, e_{7}, \ldots, e_{n-3}, v_{3}, v_{6}, v_{9}, \ldots, v_{n-1}, v_{n}\right\}, \\
V_{2} & =\left\{e_{2}, e_{5}, e_{8}, \ldots, e_{n-2}, e_{n}, v_{4}, v_{7}, v_{10}, \ldots, v_{n-3}\right\}, \\
V_{3} & =\left\{e_{3}, e_{6}, e_{9}, \ldots, e_{n-1}, v_{1}, v_{2}, v_{5}, v_{8}, \ldots, v_{n-2}\right\} .
\end{aligned}
$$

Now, $\left|V_{1}\right|=\frac{n-1}{3}+\frac{n-1}{3}+1=\frac{2 n+1}{3},\left|V_{2}\right|=\frac{n-1}{3}+1+\frac{n-4}{3}=\frac{2 n-2}{3}$, and $\left|V_{3}\right|=\frac{n-1}{3}+1+\frac{n-1}{3}=\frac{2 n+1}{3}$.
Clearly, $V_{1}, V_{2}$ and $V_{3}$ are independent sets of $M\left(C_{n}\right)$.
Also, $\left|V_{1}\right|=\left|V_{3}\right|$ and $\left|\left|V_{1}\right|-\left|V_{2}\right|\right|=\left|\left|V_{2}\right|-\left|V_{3}\right|\right|=\left|\frac{2 n+1}{3}-\left(\frac{2 n-2}{3}\right)\right|=1$. It holds the inequality $\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$, for every $i$ and $j$. Thus, $\chi_{e}\left(M\left(C_{n}\right)\right) \leq 3$.

Case 3: when $n \equiv 2(\bmod 3)$ :
Consider the color function $c: V\left(M\left(C_{n}\right)\right) \rightarrow \mathbb{N}$ as
$c\left(v_{1}\right)=3 ; c\left(e_{3 k-2}\right)=1 ; c\left(e_{3 k-1}\right)=2 ; c\left(v_{3 k-1}\right)=3$ where $k=1,2, \ldots, \frac{n+1}{3}$.
$c\left(v_{3 k}\right)=1 ; c\left(v_{3 k+1}\right)=2 ; c\left(e_{3 k}\right)=3$ where $k=1,2, \ldots, \frac{n-2}{3}$.
Now, partition the vertex set $V\left(M\left(C_{n}\right)\right)$ as

$$
\begin{aligned}
& V_{1}=\left\{e_{1}, e_{4}, e_{7}, \ldots, e_{n-1}, v_{3}, v_{6}, v_{9}, \ldots, v_{n-2}\right\}, \\
& V_{2}=\left\{e_{2}, e_{5}, e_{8}, \ldots, e_{n}, v_{4}, v_{7}, v_{10}, \ldots, v_{n-1}\right\} \\
& V_{3}=\left\{e_{3}, e_{6}, e_{9}, \ldots, e_{n-2}, v_{1}, v_{2}, v_{5}, v_{8}, \ldots, v_{n}\right\} .
\end{aligned}
$$

Now, $\left|V_{1}\right|=\frac{n+1}{3}+\frac{n-2}{3}+1=\frac{2 n-1}{3},\left|V_{2}\right|=\frac{n+1}{3}+\frac{n-2}{3}=\frac{2 n-1}{3}$, and
$\left|V_{3}\right|=\frac{n-2}{3}+1+\frac{n+1}{3}=\frac{2 n+2}{3}$.

Clearly, $V_{1}, V_{2}$ and $V_{3}$ are independent sets of $M\left(C_{n}\right)$.
Also, $\left|V_{1}\right|=\left|V_{2}\right|$ and $\left|\left|V_{1}\right|-\left|V_{3}\right|\right|=\left|\left|V_{2}\right|-\left|V_{3}\right|\right|=\left|\frac{2 n-1}{3}-\left(\frac{2 n+2}{3}\right)\right|=1$. It holds the inequality $\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$, for every $i$ and $j$. Thus, $\chi_{e}\left(M\left(C_{n}\right)\right) \leq 3$.

Thus,

$$
\begin{equation*}
\chi_{e}\left(M\left(C_{n}\right)\right) \leq 3, \text { for all } n \tag{2}
\end{equation*}
$$

Therefore from (1) and (2) we get, $\chi_{e}\left(M\left(C_{n}\right)\right)=3$.
Definition 2.3. The shadow graph $D_{2}(G)$ of a connected graph $G$ is constructed by taking two copies of $G$, say $G^{\prime}$ and $G^{\prime \prime}$. Join each vertex $u^{\prime}$ in $G^{\prime}$ to the neighbors of the corresponding vertex $u^{\prime \prime}$ in $G^{\prime \prime}$.

## Theorem 2.4.

$$
\chi_{e}\left(D_{2}\left(C_{n}\right)\right)=\left\{\begin{array}{rc}
2, & n \text { is even } \\
3, & n \text { is odd }
\end{array}\right.
$$

Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(C_{n}\right)=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ where $e_{i}=v_{i} v_{i+1}$; $1 \leq i \leq n-1$ and $e_{n}=v_{n} v_{1}$. The shadow graph of $C_{n}, D_{2}\left(C_{n}\right)$, has two copies, say $C_{n}^{\prime}$ and $C_{n}^{\prime \prime}$, with $V\left(D_{2}\left(C_{n}\right)\right)=\left\{v_{i}^{\prime}, v_{i}^{\prime \prime} ; 1 \leq i \leq n\right\}$. In $D_{2}\left(C_{n}\right), N\left(v_{i}^{\prime}\right)=N\left(v_{i}^{\prime \prime}\right)$ and $v_{i}^{\prime}$ and $v_{i}^{\prime \prime}$ are non adjacent vertices.

Case 1: when $n$ is even:
Consider the color function $c: V\left(D_{2}\left(C_{n}\right)\right) \rightarrow \mathbb{N}$ as
$c\left(v_{2 k-1}^{\prime}\right)=c\left(v_{2 k-1}^{\prime \prime}\right)=1$ and $c\left(v_{2 k}^{\prime}\right)=c\left(v_{2 k}^{\prime \prime}\right)=2$.
Now, partition the vertex set of $D_{2}\left(C_{n}\right)$ as

$$
\begin{aligned}
V_{1} & =\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}, v_{3}^{\prime}, v_{3}^{\prime \prime}, \ldots, v_{n-1}^{\prime}, v_{n-1}^{\prime \prime}\right\} \text { and } \\
V_{2} & =\left\{v_{2}^{\prime}, v_{2}^{\prime \prime}, v_{4}^{\prime}, v_{4}^{\prime \prime}, \ldots, v_{n}^{\prime}, v_{n}^{\prime \prime}\right\} .
\end{aligned}
$$

Clearly, $V_{1}$ and $V_{2}$ are independent sets of $D_{2}\left(C_{n}\right)$ and $\left|\left|V_{1}\right|-\left|V_{2}\right|\right|=1$. It holds the inequality $\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$ for every pair $(i, j)$. Thus $\chi_{e}\left(D_{2}\left(C_{n}\right)\right)=2$.

Case 2: when $n$ is odd:
As $D_{2}\left(C_{n}\right)$ contains an odd cycle, it is not a bipartite graph. So it is not possible to partition the vertex set of $D_{2}\left(C_{n}\right)$ into two independent sets. Therefore $\chi_{e}\left(D_{2}\left(C_{n}\right)\right) \neq 2$. Thus we have the following three subcases:

Subcase 1: $n \equiv 0(\bmod 3)$ :
Consider the color function $c: V\left(D_{2}\left(C_{n}\right)\right) \rightarrow \mathbb{N}$ as
$c\left(v_{3 k-2}^{\prime}\right)=c\left(v_{3 k-2}^{\prime \prime}\right)=1$;
$c\left(v_{3 k-1}^{\prime}\right)=c\left(v_{3 k-1}^{\prime \prime}\right)=2$;
$c\left(v_{3 k}^{\prime}\right)=c\left(v_{3 k}^{\prime \prime}\right)=3 ; k=1,2, \ldots, \frac{n}{3}$.
Now, partition the vertex set of $D_{2}\left(C_{n}\right)$ as

$$
V_{1}=\left\{v_{3 k-2}^{\prime}, v_{3 k-2}^{\prime \prime}\right\}, V_{2}=\left\{v_{3 k-1}^{\prime}, v_{3 k-1}^{\prime \prime}\right\} \text { and } V_{3}=\left\{v_{3 k}^{\prime}, v_{3 k}^{\prime \prime}\right\} ; k=1,2, \ldots, \frac{n}{3} .
$$

Clearly, $V_{1}, V_{2}$ and $V_{3}$ are independent sets of $D_{2}\left(C_{n}\right)$. Also, $\left|V_{1}\right|=\left|V_{2}\right|=\left|V_{3}\right|=\frac{2 n}{3}$. Thus, $\chi_{e}\left(D_{2}\left(C_{n}\right)\right)=3$.

Subcase 2: $n \equiv 1(\bmod 3)$ :
Consider the color function $c: V\left(D_{2}\left(C_{n}\right)\right) \rightarrow \mathbb{N}$ as
$c\left(v_{1}^{\prime}\right)=c\left(v_{n-2}^{\prime}\right)=1 ; c\left(v_{3 k}^{\prime}\right)=c\left(v_{3 k}^{\prime \prime}\right)=1 ; k=1,2, \ldots, \frac{n-4}{3}$.
$c\left(v_{n}^{\prime}\right)=2, c\left(v_{3 k-1}^{\prime}\right)=2 ; k=1,2, \ldots, \frac{n-4}{3}$.
$c\left(v_{n}^{\prime \prime}\right)=2, c\left(v_{3 k-1}^{\prime \prime}\right)=2 ; k=1,2, \ldots, \frac{n-1}{3}$.
$c\left(v_{n-1}^{\prime}\right)=3, c\left(v_{3 k+1}^{\prime}\right)=3 ; k=1,2, \ldots, \frac{n-4}{3}$.
$c\left(v_{n-1}^{\prime \prime}\right)=3, c\left(v_{3 k-2}^{\prime \prime}\right)=3 ; k=1,2, \ldots, \frac{n-1}{3}$.
Now, partition the vertex set of $D_{2}\left(C_{n}\right)$ as

$$
\begin{aligned}
V_{1} & =\left\{v_{1}^{\prime}, v_{n-2}^{\prime}, v_{3 k}^{\prime}, v_{3 k}^{\prime \prime} ; k=1,2, \ldots, \frac{n-4}{3}\right\}, \\
V_{2} & =\left\{v_{n}^{\prime}, v_{n}^{\prime \prime}, v_{3 k-1}^{\prime}\left(k=1,2, \ldots, \frac{n-4}{3}\right), v_{3 k-1}^{\prime \prime}\left(k=1,2, \ldots, \frac{n-1}{3}\right)\right\}, \text { and } \\
V_{3} & =\left\{v_{n-1}^{\prime}, v_{n-1}^{\prime \prime}, v_{3 k+1}^{\prime}\left(k=1,2, \ldots, \frac{n-4}{3}\right), v_{3 k-2}^{\prime \prime}\left(k=1,2, \ldots, \frac{n-1}{3}\right)\right\} .
\end{aligned}
$$

Clearly, $V_{1}, V_{2}$ and $V_{3}$ are independent sets of $D_{2}\left(C_{n}\right)$. Also, $\left|V_{1}\right|=\frac{2 n-2}{3},\left|V_{2}\right|=\frac{2 n+1}{3}$ and $\left|V_{3}\right|=\frac{2 n+1}{3}$. Now, $\left|V_{2}\right|=\left|V_{3}\right|$ and $\left|\left|V_{1}\right|-\left|V_{2}\right|\right|=$ $\left|\left|V_{1}\right|-\left|V_{3}\right|\right|=\left|\frac{2 n-2}{3}-\left(\frac{2 n+1}{3}\right)\right|=1$. It holds the inequality $\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$, for every pair $(i, j)$. Thus, $\chi_{e}\left(D_{2}\left(C_{n}\right)\right)=3$.

Subcase 3: $n \equiv 2(\bmod 3)$ :
Consider the color function $c: V\left(D_{2}\left(C_{n}\right)\right) \rightarrow \mathbb{N}$ as
$c\left(v_{3 k-2}^{\prime}\right)=1 ; k=1,2, \ldots, \frac{n+1}{3}$.
$c\left(v_{3 k+1}^{\prime \prime}\right)=1 ; k=1,2, \ldots, \frac{n-2}{3}$
$c\left(v_{3 k-1}^{\prime}\right)=c\left(v_{3 k-1}^{\prime \prime}\right)=2 ; k=1,2, \ldots, \frac{n+1}{3}$.
$c\left(v_{1}^{\prime \prime}\right)=3 ; c\left(v_{3 k}^{\prime}\right)=c\left(v_{3 k}^{\prime \prime}\right)=3 ; k=1,2, \ldots, \frac{n-2}{3}$.
Now, partition the vertex set of $D_{2}\left(C_{n}\right)$ as

$$
\begin{aligned}
V_{1} & =\left\{v_{1}^{\prime}, v_{4}^{\prime}, v_{7}^{\prime}, \ldots, v_{n-1}^{\prime}, v_{4}^{\prime \prime}, v_{7}^{\prime \prime}, \ldots, v_{n-1}^{\prime \prime}\right\}, \\
V_{2} & =\left\{v_{2}^{\prime}, v_{5}^{\prime}, v_{8}^{\prime}, \ldots, v_{n}^{\prime}, v_{2}^{\prime \prime}, v_{5}^{\prime \prime}, \ldots, v_{n}^{\prime \prime}\right\},
\end{aligned}
$$

$$
V_{3}=\left\{v_{3}^{\prime}, v_{6}^{\prime}, \ldots, v_{n-2}^{\prime}, v_{1}^{\prime \prime}, v_{3}^{\prime \prime}, v_{6}^{\prime \prime}, \ldots, v_{n-2}^{\prime \prime}\right\} \text {. Now, } V_{1}, V_{2} \text { and } V_{3} \text { are independent }
$$ sets of $D_{2}\left(C_{n}\right)$.

Also, $\left|V_{1}\right|=\frac{n+1}{3}+\frac{n-2}{3}=\frac{2 n-1}{3},\left|V_{2}\right|=\frac{2(n+1)}{3}$ and $\left|V_{3}\right|=\frac{2(n-2)}{3}+1=\frac{2 n-1}{3}$.
Now, $\left|V_{1}\right|=\left|V_{3}\right|$ and $\left|\left|V_{2}\right|-\left|V_{3}\right|\right|=\left|\left|V_{2}\right|-\left|V_{1}\right|\right|=\left|\frac{2 n+2}{3}-\left(\frac{2 n-1}{3}\right)\right|=1$. It holds the inequality $\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$, for every pair $(i, j)$. Thus, $\chi_{e}\left(D_{2}\left(C_{n}\right)\right)=3$.

Definition 2.5. The splitting graph $S^{\prime}(G)$ of a connected graph $G$ is obtained by adding new vertex $v^{\prime}$ corresponding to each vertex $v$ of $G$ such that $N(v)=N\left(v^{\prime}\right)$ where $N(v)$ and $N\left(v^{\prime}\right)$ are the neighborhood sets of $v$ and $v^{\prime}$ respectively.

The following theorem can be proved by the arguments analogous to the previous Theorem 2.4.

## Theorem 2.6.

$$
\chi_{e}\left(S^{\prime}\left(C_{n}\right)\right)=\left\{\begin{array}{rc}
2, & n \text { is even } \\
3, & n \text { is odd }
\end{array}\right.
$$

Proof. We have $V\left(S^{\prime}\left(C_{n}\right)\right)=V\left(D_{2}\left(C_{n}\right)\right)$ and $E\left(S^{\prime}\left(C_{n}\right)\right) \subset E\left(D_{2}\left(C_{n}\right)\right)$. Then by Proposition 1.1, $\chi_{e}\left(S^{\prime}\left(C_{n}\right)\right) \leq \chi_{e}\left(D_{2}\left(C_{n}\right)\right)$. Now, we can assign the same coloring as in $D_{2}\left(C_{n}\right)$ and hence, $\chi_{e}\left(S^{\prime}\left(C_{n}\right)\right)=\chi_{e}\left(D_{2}\left(C_{n}\right)\right)$.

## 3. Conclusion

The equitable chromatic number of some standard graphs like cycle, path, wheel etc are known. We have investigated the equitable chromatic number for the larger graphs such as $M\left(C_{n}\right), D_{2}\left(C_{n}\right)$ and $S^{\prime}\left(C_{n}\right)$ obtained from cycle $C_{n}$.

## References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, London: Macmillan, 1976.
[2] B. l. Chen and K. W. Lih, "Equitable Coloring of Trees", Journal of Combinatorial Theory, Series B, 61(1994), 83-87.
[3] J. Clark and D.A. Holton, A First Look at Graph Theory, World Scientific, 1995.
[4] H. Furmańczyk, "Equitable Coloring of Graph Products", Opuscula Mathematica, 26(1) (2006), 31-44.
[5] K. Kaliraj, "On Equitable coloring of Graphs", Ph. D. Thesis, Anna University, Chennai, (2013).
[6] T. Karthick, "Note on Equitable coloring of Graphs", Australian Journal of Combinatorics, 59(2) (2014), 251-259.
[7] K. W. Lih and P. L. Wu, "On Equitable coloring of Bipartite Graphs", Discrete Mathematics, 151 (1996), 155-160.
[8] W. Meyer, "Equitable Coloring", The American Mathematical Monthly, 80(8) (1973), 920-922.


[^0]:    ${ }^{1 *}$ Corresponding Author: E-mail: samirkvaidya@yahoo.co.in, rakhiisaac@yahoo.co.in
    ${ }^{1,2}$ Department of Mathematics, Saurashtra University, Rajkot - 360005, Gujarat, India
    ${ }^{2}$ Department of Mathematics, Christ College, Rajkot - 360005, Gujarat, India.

