
In 1984, Jerzy Popenda [5] introduced a particular type of difference operator

on u(k) as ∆αu(k) = u(k + 1)− αu(k). In 1989, Miller and Rose [8] introduced the

discrete analogue of the Riemann-Liouville fractional derivative and its inverse

∆−ν
h f(t) ([1, 4]).

In 2011, M.Maria Susai Manuel, et.al, [7] extended the operator ∆α to

generalized α−difference operator as ∆
α(ℓ)

v(k) = v(k+ ℓ)− αv(k) for the real valued

function v(k). In 2014, G.Britto Antony Xavier, et.al, [2] introduced q−difference

operator as ∆qv(k) = v(qk)− v(k), q ∈ (0,∞) and obtained finite series solution to

the corresponding generalized q−difference equation ∆qv(k) = u(k). With this

backround, in this paper, we obtain advanced Fibonacci sequence and its sum by

introducing nth-order difference operator with variable co-efficients.
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1. Introduction

Abstract. In this paper, we introduce generalized mth order difference operator

with variable co-efficient and its inverse by which we obtain higher Fibonacci

sequence and its sum. Some theorems and interesting results on the sum of the

terms ofhigher Fibonacci sequence with variable co-efficients are derived. Suitable

examples are provided to illustrate our results.

Key words: Generalized difference operator, Variable co-efficients, Fibonacci

sequence , Closed form solution, Fibonacci summation.
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2. Higher Order Finonacci Sequence And Series By Generalized mth

order variable Co-efficient Difference Equation

Fibonacci and Lucas numbers cover a wide range of interest in modern

mathematics as they appear in the comprehensive works of Koshy [6] and Vajda

[10]. The k−Fibonacci sequence introduced by Falcon and Plaza [3] depends only

on one integer parameter k and is defined as

Fk,0 = 0, Fk,1 = 1 and Fk,n+1 = kFk,n + Fk,n−1, where n ≥ 1, k ≥ 1.

In particular, if k = 2, the Pell sequence is obtained as

P0 = 0, P1 = 1 and Pn+1 = 2Pn + Pn−1 for n ≥ 1.

Here we introduce mth-order generalized difference operator with variable

co-efficients ∆
λα(ℓ)

v(k) = v(k) −
n
∑

i=1

αik
riv(k − iℓ), λα(ℓ) = (α1k

r1 , α2k
r2 ...αmk

rm)

which generates higher order Fibonacci sequence and its sum.

Definition 2.1. For k ∈ [0,∞), higher order Fibonacci sequence is defined as

F0 = 1, F1 = α1k
r1 , Fn = α1[k−(n−1)ℓ]r1Fn−1+α2[k−(n−2)ℓ]r2Fn−2, n ≥ 2 (1)

If α1 = α2 = r1 = r2 = ℓ = 1 in (1), we have the well known Fibonacci sequence.

Example 2.2. (i) Taking k = 7,α1 = 10, α2 = 7, r1 = 3 and r2 = 2 in (1), we get

a Fibonacci sequence
{

1, 490, 193207, 12173560, · · ·
}

.

(ii) When k = 9,α1 = 0.8, α2 = 0.3, r1 = 2 and r2 = 4 in (1), we have a Fibonacci

sequence
{

1, 583.2, 238903.02, 65566186.13, · · ·
}

.

Similarly, one can obtain higher order Fibonacci sequences corresponding to

each λα(ℓ) = (α1k
r1 , α1k

r2 ...αmk
rm) ∈ R

2.

Definition 2.3. A generalized mth order difference operator with variable

co-efficients on v(k), denoted as ∆
λα(ℓ)

v(k), where λα(ℓ) = (α1k
r1 , α1k

r2 ...αmk
rm) is

defined as

∆
λα(ℓ)

v(k) = v(k)−
m
∑

i=1

αik
riv(k − iℓ), k, ℓ ∈ [0,∞) (2)

and its inverse is defined as below;

if ∆
λα(ℓ)

v(k) = u(k), then we write v(k) =
−1

∆
λα(ℓ)

u(k). (3)
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Lemma 2.4. Let v(k) be a functions of k ∈ (−∞,∞). Then we obtain

−1

∆
λα(ℓ)

ask
[

1−
m
∑

i=1

αik
ri

aisℓ

]

= ask. (4)

Proof. Taking v(k) = ask in (2), we obtain ∆
λα(ℓ)

ask = ask
[

1 −
m
∑

i=1

αik
ri

aisℓ

]

. Now (4)

follows from (3). �

Corollary 2.5. If m = 3 in lemma 2.4, then we obtained

−1

∆
λα(ℓ)

ask
[

1−
3

∑

i=1

αik
ri

aisℓ

]

= ask. (5)

Proof. Taking u(k) = ask
[

1−
3
∑

i=1

αik
ri

aisℓ

]

in (2), we have

∆
λα(ℓ)

ask = ask
[

1−
3
∑

i=1

αik
ri

aisℓ

]

.

Now (5) follows from (3). �

Corollary 2.6. Let e−sk be a function of k ∈ (−∞,∞). Then we have

−1

∆
λα(ℓ)

e−sk
[

1−
m
∑

i=1

αik
rieisℓ

]

= e−sk. (6)

Proof. The proof follows by assuming a = e−1 in (4). �

Corollary 2.7. Let e−sk be a function of k ∈ (−∞,∞). Then we have

−1

∆
λα(ℓ)

e−sk
[

1−
3

∑

i=1

αik
rieisℓ

]

= e−sk. (7)

Proof. The proof follows by assuming m = 3 in corollary 2.6. �

Corollary 2.8. Let esk be a function of k ∈ (−∞,∞), then we obtained

−1

∆
λα(ℓ)

esk
[

1−
m
∑

i=1

αik
r
i

eisℓ

]

= esk. (8)

Proof. The proof follows by taking a = esk in lemma 2.4. �
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Corollary 2.9. Let esk be a function of k ∈ (−∞,∞), then we obtained

−1

∆
λα(ℓ)

esk
[

1−
3

∑

i=1

αik
r
i

eisℓ

]

= esk. (9)

Proof. The proof follows by taking m = 3 in corollary 2.8. �

Corollary 2.10. Let logk be a function of k > 2ℓ. Then we have

−1

∆
λα(ℓ)

[

logk −

m
∑

i=1

αik
rilog(k − iℓ)

]

= logk. (10)

Proof. Taking v(k) = logk in (2), we obtained

∆
λα(ℓ)

logk = logk −
m
∑

i=1

αik
r
i log(k − iℓ).

Now (10) follows from (3). �

Corollary 2.11. Let logk be a function of k > 2ℓ. Then we have

−1

∆
λα(ℓ)

[

logk −

3
∑

i=1

αik
rilog(k − iℓ)

]

= logk. (11)

Proof. The proof follows by taking m = 3 in corollary 2.10. �

Theorem 2.12. If v(k) =
−1

∆
λα(ℓ)

u(k), F0 = 1, F1 = F0α1k
r1 and

Fn+1 =
n
∑

i=0

Fn−iαi+1[k−(n−i)ℓ]ri+1, then
n
∑

i=0
Fi u(k−iℓ) = v(k)−Fn+1v(k−(n+1)ℓ)−

n
∑

i=0

Fn−iαi+2[k − (n− i)ℓ]ri+2v(k − (n+ 2)ℓ)−

n−1
∑

i=0

Fn−iαi+3[k−(n−i)ℓ]ri+3v(k−(n+3)ℓ)+...+Fnαm(k−nℓ)rmv(k−(n+m)ℓ). (12)

Proof. From (2) and (3), we arrive

v(k) = u(k) + α1k
r1v(k − ℓ) + α2k

r2v(k − 2ℓ) + ..+ αmk
rmv(k −mℓ). (13)

Replacing k by k − ℓ and then substituting the value of v(k − ℓ) in (13), we get

v(k) = u(k) + F1u(k − ℓ) + [F1α1(k − ℓ)r1 + α2k
r2 ]v(k − 2ℓ) + ...+

[F1αm−1(k − ℓ)rm−1 + αmk
rm ]v(k −mℓ) + F1αm(k − ℓ)rmv(k − (m+ 1)ℓ) (14)
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which gives

v(k) = u(k) + F1u(k − ℓ) + F2v(k − 2ℓ) + [F1α2(k − ℓ)r2 + α3k
r3 ]v(k − 3ℓ) + ...+

[F1αm−1(k − ℓ)rm−1 + αmk
rm ]v(k −mℓ) + F1αm(k − ℓ)rmv(k − (m+ 1)ℓ), (15)

where F0, F1 and F2 are given in (1).

Replacing k by k − 2ℓ in (13) and then substituting v(k − 2ℓ) in (15), we obtain

v(k) =
3
∑

i=0

Fiu(k − iℓ) + ...+ F2αm(k − 2ℓ)rmv(k − (m+ 2)ℓ),

where F3 is given in (1). Repeating this process again and again, we get (16). �

Corollary 2.13. If v(k) =
−1

∆
λα(ℓ)

u(k), F0 = 1, F1 = F0α1k
r1 and

Fn+1 =
n
∑

i=0

Fn−iαi+1[k−(n−i)ℓ]ri+1, then
n
∑

i=0
Fi u(k−iℓ) = v(k)−Fn+1v(k−(n+1)ℓ)−

1
∑

i=0

Fn−iαi+2[k− (n− i)ℓ]ri+2v(k− (n+ 2)ℓ) + Fnα3(k− nℓ)r3v(k− (n+ 3)ℓ). (16)

Proof. The proof follows by taking m = 3 in Theorem 2.12. �

Corollary 2.14. If v(k) is a closed form solution of the mth order generalized

difference equation

∆
λα(ℓ)

v(k) = ask
[

1−
α1k

r1

asℓ
−

α2k
r2

a2sℓ
−

α1k
r3

a3sℓ

]

,

then we obtain

ask
[

1−
Fn+1

as(n+1)ℓ
−

1
∑

i=0

Fn−iαi+2[k − (n− i)ℓ]ri+2

as(n+2)ℓ
−

Fnα3(k − nℓ)r3

as(n+3)ℓ

]

=
n

∑

i=0

Fia
s(k−iℓ)

[

1−
α1(k − iℓ)r1

asℓ
−

α2(k − iℓ)r2

a2sℓ
−

α3(k − iℓ)r3

a3sℓ

]

. (17)

Proof. The proof of (17) follows by taking v(k) = ask and applying (4) in (16). �

The following example is an verification of corollary 2.14.

Example 2.15. Taking k = 9,ℓ = 0.3,n = 1, a = 5, α1 = 0.2, α2 = 0.3,α3 = 0.4,

r1 = 1 and r2 = 3,r3 = 4 in (17), we get

59 − F25
−2 − 3F25

−5 =
1
∑

i=0

Fi5
(9−0.3i)

[

1− 2(7−3i)1

53
−

3(7−3i)2

56

]

= 78077.15136,

where F0 = 1, F1 = 14, F2 = 259, F3 = 1190.
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Corollary 2.16. Let e−sk be a function of k ∈ (−∞,∞). Then

e−sk
[

1−Fn+1e
s(n+1)ℓ−

1
∑

i=0

Fn−iαi+2[k− (n− i)ℓ]ri+2es(n+2)ℓ+Fnα3(k−nℓ)r3es(n+3)ℓ
]

=
n

∑

i=0

Fie
−s(k−iℓ)

[

1− α1(k − iℓ)r1esℓ − α2(k − iℓ)r2e2sℓ − α3(k − iℓ)r3e3sℓ
]

. (18)

Proof. Taking v(k) = e−sk and applying (6) in (4), we get (18). �

Example 2.17. Taking k = 9, ℓ = 1, n = 3, α1 = 0.8, α2 = 0.3, r = 3 and s = 2

in (18), then we obtained

e−9 − F4e
5 − (0.3)62F3e

−4 =
3
∑

i=0

Fie
−(9−i)

[

1− (0.8)(9− i)3e− (0.3)(9− i)2e2
]

= −89333078.94

where F0 = 1, F1 = 583.2, F2 = 238903.02, F3 = 65566186.13 and F4 = 11333348840.

Theorem 2.18. Let t ∈ N(0) . Then a closed form solution of the generalized mth

order difference equation v(k)−
m
∑

i=1

αik
riv(k − iℓ) =

[

kt −
m
∑

i=1

αik
ri(k − iℓ)t

]

is

−1

∆
λα(ℓ)

[

kt
−

m
∑

i=1

αik
ri(k − iℓ)t

]

= kt (19)

Proof. Taking v(k) = kt in (2) and using (3), we get (19). �

Corollary 2.19. If v(k) =
−1

∆
λα(ℓ)

[

kt −
m
∑

p=1

αpk
rp(k− pℓ)t

]

is the closed form solution

given in (19), then

v(k)− Fn+1(k − (n+ 1)ℓ)t −
n
∑

i=0

Fn−iαi+2[k − (n− i)ℓ]ri+2(k − (n+ 2)ℓ)t + ...+

Fnαm(k−nℓ)rm(k−(n+m)ℓ)t =
n

∑

i=0

Fi

[

(k−iℓ)t−
m
∑

p=1

αp(k−pℓ)rp [k−(i+p)ℓ]t
]

. (20)

Proof. Taking u(k) = kt −
m
∑

p=1

αpk
rp(k − pℓ)t in Theorem 2.12, we have 20. �

Example 2.20. Let k = 7, ℓ = 2, n = 3, t = 2, r = 3, s = 4 α1 = 5, α2 = 3 in

Corollary (2.19). Then
3
∑

i=0

Fiu(7− 2i) = v(7)− F4v(−1)− α2F3v(−3) = −5, 026, 731, 585.

where u(k) = kt −α1k
r(k− ℓ)t−α2k

s(k− 2ℓ)t, F0 = 1, F1 = 1715, F2 = 1, 079, 078,

F3 = 148, 891, 115 and F4 = 1, 006, 671, 529.
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Corollary 2.21. If v(k) is a closed form solution of mth order difference equation

with variable co-efficients

v(k)−
m
∑

i=1

αik
riv(k − iℓ) = ktask −

m
∑

i=1

[

αik
ri(k − iℓ)tas(k−iℓ)

]

, then we have

ktask − Fn+1(k − (n+ 1)ℓ)tas(k−(n+1)ℓ) −
n
∑

i=0

Fn−iαi+2[k − (n− i)ℓ]ri+2×

(k − (n+ 2)ℓ)tas(k−(n+2)ℓ) + ...+ Fnαm(k − nℓ)rm(k − (n+m)ℓ)tas(k−(n+m)ℓ)

=
n

∑

i=0

Fi

[

(k − iℓ)t −
m
∑

p=1

αp(k − pℓ)rp [k − (i+ p)ℓ]tas[k−(i+p)ℓ]
]

. (21)

Proof. Taking u(k) = ktask −
m
∑

i=1

[

αik
ri(k − iℓ)tas(k−iℓ)

]

in Theorem 2.12 and using

(4), we get 21. �

Corollary 2.22. A closed form solution of generalized third odrer difference equation

∆
λα(ℓ)

v(k) = k2ask −
3
∑

i=1

[

αik
ri(k − iℓ)2as(k−iℓ)

]

is k2ak and hence we have

k2ask − Fn+1(k − (n+ 1)ℓ)2as(k−(n+1)ℓ) −
1
∑

i=0

Fn−iαi+2[k − (n− i)ℓ]ri+2

(k − (n+ 2)ℓ)2as(k−(n+2)ℓ) + Fnα3(k − nℓ)r3(k − (n+ 3)ℓ)2as(k−(n+3)ℓ)

=
n

∑

i=0

Fi

[

(k − iℓ)2as(k−iℓ)
−

3
∑

p=1

αp(k − iℓ)rp [k − (p+ i)ℓ]2as(k−(p+i)ℓ)
]

. (22)

Proof. The proof follows by taking m = 3 and t = 2 in Corollary 2.21. �

Example 2.23. Let k = 5, ℓ = 2, a = 3, n = 4, α1 = 0.02, α2 = 0.03, r = 3, s = 2

in Corollary (2.22). Then we obtain

v(5)− F5v(−5)− (0.03)F4v(−7) =
3
∑

i=0

Fi[(5− 2i)33k−2i − (0.02)(5− 2i)3×

[5− (i+ 1)2]335−(i+1)2 − (.03)(5− 2i)2[5− 2(i+ 2)]335−2(i+2)] = 24, 611, 856.47,

where F0 = 1, F1 = 2.5, F2 = 2.1, F3 = 0.717, F4 = 0.04866 and F5 = 0.0477864.

Corollary 2.24. A closed form solution of the second order difference equation

v(k)−
3
∑

i=0

αik
riv(k − iℓ) = kte−sk −

3
∑

p=0

αpk
rp(k − pℓ)te−s(k−pℓ) is given by

kte−sk − Fn+1(k − (n+ 1)ℓ)te−s(k−(n+1)ℓ) −
1
∑

i=0

Fn−iαi+2[k − (n− i)ℓ]ri+2×
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(k − (n+ 2)ℓ)te−s(k−(n+2)ℓ) + Fnα3(k − nℓ)r3(k − (n+ 3)ℓ)te−s(k−(n+3)ℓ)

=
n

∑

i=0

Fie
−s(k−iℓ)

[

(k − iℓ)t −
3

∑

p=1

αp(k − (p+ i)ℓ)rp [k − (p+ i)ℓ]tespℓ
]

. (23)

Proof. Taking a = e−1 in (21), we get (23). �

Corollary 2.25. If v(k) =
−1

∆
λα(ℓ)

[

ke−sk −
m
∑

p=1

αpk
p(k− pℓ)e−s(k−ℓ)

]

is the closed form

solution given in (23), then

ke−sk − Fn+1(k − (n+ 1)ℓ)e−s(k−(n+1)ℓ) −
1
∑

i=0

Fn−iαi+2[k − (n− i)ℓ]ri+2×

(k − (n+ 2)ℓ)e−s(k−(n+2)ℓ) + Fnα3(k − nℓ)r3(k − (n+ 3)ℓ)e−s(k−(n+3)ℓ)

=
n

∑

i=0

Fie
−s(k−iℓ)

[

(k − iℓ)−
3

∑

p=1

αp(k − (p+ i)ℓ)rp [k − (p+ i)ℓ]espℓ
]

. (24)

Proof. The proof follows by taking t = 1 in Corollory 2.24. �

Theorem 2.26. Let v(k) be a solution of the nth-order difference equation with

variable co-efficients

v(k)−
m
∑

i=0

αik
riv(k − iℓ) = k(t)ask −

m
∑

p=1

αpk
rp(k − pℓ)(t)as(k−pℓ),

then we have

k(t)ask − Fn+1(k − [n+ 1]ℓ)(t)as(k−[n+1]ℓ) −
n
∑

i=0

Fn−iαi+2[k − (n− i)ℓ]ri+2×

(k − [n+ 2]ℓ)(t)as(k−[n+2]ℓ) −
n−1
∑

i=0

Fn−iαi+3[k − (n− i)ℓ]ri+3(k − [n+ 3]ℓ)(t)as(k−[n+3]ℓ)

+...+ Fnαm(k − nℓ)rm(k − [n+m]ℓ)(t)as(k−[n+m]ℓ)

=
n

∑

i=0

Fia
s(k−iℓ)

[

(k − iℓ)(t) −
m
∑

p=1

αp(k − iℓ)rp(k − (i+ p)ℓ)(t)a−spℓ)
]

(25)

Proof. Taking v(k) = k(t)ask in Theorem 2.12 and using (4), we get 25. �

Corollary 2.27. If v(k) is the closed form solution given of (25), then

k(2)ask − Fn+1(k − [n+ 1]ℓ)(2)as(k−[n+1]ℓ) −
1
∑

i=0

Fn−iαi+2[k − (n− i)ℓ]ri+2×

(k − (n+ 2)ℓ)(2)a−s(k−(n+2)ℓ) − Fnα3(k − nℓ)r3(k − (n+ 3)ℓ)e−s(k−(n+3)ℓ)

=
n

∑

i=0

Fia
s(k−iℓ)

[

(k − iℓ)(2) −
3

∑

p=1

αp(k − iℓ)rp [k − (i+ p)ℓ](2)a−psℓ
]

. (26)
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Proof. The proof follows by taking m = 3 and t = 2 in Theorem 2.26. �

Example 2.28. Let k = 7, ℓ = 2, a = 3, n = 2, α1 = 0.04, α2 = 0.06, r = 4, s = 3

in Corollary (2.27). Then we obtain

v(7)− F3v(1)− (0.06)33F2v(−1) =
2
∑

i=0

Fi[(7− 2i)(2)3k−2i − (0.06)(7− 2i)3

[7− 2(i+ 1)](2)37−2(i+1) − (.06)(7− 2i)(2)[7− 2(i+ 2)]337−2(i+2)] = 84008.0808,

where F0 = 1, F1 = 96.04, F2 = 2421.58, F3 = 8566.2192.

Corollary 2.29. Let v(k) be a solution of nth order difference equation with variable

co-efficients v(k)−
m
∑

i=0

αik
riv(k − iℓ) = e−sk

[

k(2) −
m
∑

p=1

αpk
rp(k − pℓ)(2)epsℓ

]

.

Then we have

k(2)e−sk − Fn+1(k − [n+ 1]ℓ)(2)e−s(k−[n+1]ℓ) −
1
∑

i=0

Fn−iαi+2[k − (n− i)ℓ]ri+2×

(k − (n+ 2)ℓ)(2)e−s(k−(n+2)ℓ) − Fnα3(k − nℓ)r3(k − (n+ 3)ℓ)(2)e−s(k−(n+3)ℓ)

=
n

∑

i=0

Fie
−(k−iℓ)

[

(k − iℓ)(2) −
m
∑

p=1

αp(k − iℓ)rp [k − (i+ p)ℓ](2)epsℓ
]

. (27)

Proof. Taking a = e−1 in (2.27), we get (27). �

Example 2.30. Let k = 6,ℓ = 0.21 n = 2, a = 0.2, α1 = 2, α2 = 0.3, r = 3, s = 2

in Corollary (2.29). Then we obtain

v(6)− F3v(5.37)− (0.3)(5.58)2F2v(5.16) =
3
∑

i=0

Fi[(6− (0.21)i)(3)(0.2)k−(0.21)i−

(2)(6− (0.21)i)3[6− (0.21)(i+ 1)](3)(0.2)6−(0.21)(i+1) − (.3)(6− (0.21)i)2

[6− (0.21)(i+ 2)](3)36−(0.21)(i+2)] = −7, 539, 276.7060093,

where F0 = 1, F1 = 432, F2 = 167717.1217 and F3 = 8746152.49.

Conclusion: We obtained summation formula to Higher order Fibonacci sequence

by introducing generalized mth order difference operator with variable co-efficients

and have derived certain results on closed and summation form solution of

generalized mth order difference equation with variable co-efficients which will be

used to our further research.
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