
1 Introduction

For recent years, the researchers have witnessed ontology’s plenty of applications in many fields,
like image retrieval, information systems, industrial control, collaboration, as well as biomimetic
robot. It’s well known for the researchers that ontology, a tool of knowledge representation and
storage, is an effective concept semantic computation model. Therefore, ontology also attract-
s researchers from different other disciplines such as GIS, education science and management,
chemistry index calculating, neuroscience, pharmaceutics and nanotechnology (for instance, see
Kim et al., [1], Slota et al., [2], Azevedo et al., [3], Wimmer and Rada [4], Dececchi et al., [5],
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Santos [6], Santipantakis and Vouros [7], Euzenat [8], Menzel [9] and Takahashi and Kadobayashi
[10]).

In specific, we use a (directed) graph to represent an ontology whose vertex is consistent with
a concept. Moreover, the relationship between two concepts is represented by the edge on an
ontology graph. It will be quite useful to get the best similarity function in order to calculate the
semantic similarity between vertices (concepts), which could be the aims of ontology applications.
Therefore, for the reason that it searched the highly similarity vertices among two or more ontology
graphs, it’s feasible for us to regard the nature of ontology mapping problem as ontology similarity
measuring.

Recent years, ontology learning algorithms are attracted much attention from the researchers.
Zhu and Gao [14] proposed a new optimization model for ontology similarity measurement and
ontology mapping in multi-dividing setting by means of using partial AUC criterion. Gao et al.,
[16] further studied the ontology algorithm in multi-dividing setting. In his point of view, the
empirical multi-dividing ontology framework can be presented as conditional linear statistical,
and an approximation result is obtained from the projection method. Based on the assumptions
of low noise, Gao et al., [18] obtained the upper bound and lower bound minimax learning rate.
Additionally, other theoretical results can be found in Gao et al., [19].

In these ontology learning algorithms, the information of concept is expressed in a p dimensional
vector. By slightly confusing the notation, we use v to both express the vertex in ontology graph
and its corresponding vector in the following context. Such mathematical representations inspire
us to consider whether the similarity between ontology vertex can be computed in terms of
geometric distance of their corresponding vectors in high dimension space. The smaller distance
between corresponding vectors are the more similarity there is between two ontology vertices and
their expression concepts.

In this paper, for this purpose, we report a new ontology optimization framework for ontology
similarity measure and ontology mapping by Laplacian based ontology regularized distance func-
tion learning. We discuss two points in designing the framework:
• How the empirical ontology data is used in the regularization learning framework?
• Can unlabeled ontology data participate in the learning procedure?
Then, in the next section, we will present the main algorithms are simultaneously give the above
two questions positive answers. At last, two experiments are manifested to measure the effec-
tiveness of our new ontology algorithm in plant science and humanoid robotics applications with
respect to similarity measuring and ontology mapping, respectively.

2 Algorithm Description

In this section, we propose our main ontology algorithm which is used to determine the geo-
metric distance of two vectors to represent two ontology vertices (i.e., two ontology concepts).

2.1 Using Empirical Ontology Data

Let Ω = {v1, v2, · · · , vn} ⊆ Rp be the ontology sample data in the p-dimensional vector space.
We directly answer the first question raised in the former section. To use the empirical ontology
data in the regularization learning framework, we take S and D as the set of similarity and
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dissimilarity pair vertices, i.e.,

S = {(vi, vj)|vertex vi and vj are similarity},

D = {(vi, vj)|vertex vi and vj are dissimilarity}.
Note that (vi, vj) ∈ S or D is determined by experts in certain special ontology applications.

Let d(vi, vj) be the geometric distance between ontology vertices vi and vj, which reflects the
similarity between their corresponding concepts. Our goal is to calculate the distance function
and then measure the similarities between the ontology vertices. Set W ∈ Rp×p be the symmetric
distance metric with its elements which can be stated as follows.

dW(vi, vj) = ‖vi − vj‖W =
√

(vi − vj)TW(vi − vj) =
√

Tr(W(vi − vj)(vi − vj)T ). (1)

where Tr(·) denotes the trace of matrix. It is easy to check that W is a valid metric ⇔ it meets
the triangle inequality and non-negativity ⇔W is positive semi-definite (PSD) matrix which is
represented as W � 0. Specifically, the matrix W formulates a classes of Mahalanobis distances
on Rp. In particular, the distance function (1) returns back to the Euclidean distance if W = I.
However, in the real ontology applications, we need to study an optimal distance function from
the ontology data instead of using the standard Euclidean function. For this purpose, the formal
distance function learning are introduced below.

2.2 Regularization Ontology Learning Model

Our ontology distance function learning problem aims to search a matrix W ∈ Rp×p from
ontology data set Ω = {v1, v2, · · · , vn} ⊆ Rp and two sets S,D can be stated as an optimization
framework presented below:

min
W�0

f(W, S,D,Ω), (2)

where W is a PSD matrix and f is a certain ontology objective function defined over the fixed
ontology data.

The core of solving the ontology distance function learning problem in formulation (2) is how
to express a suitable ontology objective function f and then determine an efficient algorithm for
solving the solution of optimization problem. The aim of this subsection is to discuss some rules
for representing appropriate optimization about the ontology distance function learning problem.

One idea for distance function learning is to minimize the distances between the ontology ver-
tices with similar pairs and maximize the distances between the ontology vertices with dissimilar
pairs. We call it a min-max ontology learning technology through which we can formulate the
ontology distance function learning problem as a convex optimization framework:

min
W�0

∑
(vi,vj)∈S

‖vi − vj‖2W (3)

s.t.
∑

(vi,vj)∈D

‖vi − vj‖W ≥ 1.

This framework aims to search the metric W by minimizing the sum of ‖vi − vj‖2W among the
similar ontology vertex pairs and also limit the sum of ‖vi− vj‖W among the dissimilar ontology
vertex pairs not less than 1.
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To improve the ontology distance function learning trick for special ontology engineering, we
use the regularization techniques which are applied to strengthen the robustness performance
and generalization of the distance function learning in practical ontology applications. As we
know, the regularization learning framework has been employed in many learning tasks which
can prevent the overfitting situations (see Lim and Hastie [20], Burke and Hoheisel [21], Tarres
and Yao [22], El-Nabarawy and Abdelbar [23], and Mozaffari and Azad [24]).

In this paper, our regularization framework for ontology distance metric learning is presented
as follows:

min
W�0

g(W) + γsLs(S) + γdLd(D), (4)

where g(W) is a regularizer related on the target matrix W, and Ls(·) and Ld(·) are two classes
of ontology loss function defined on the sets of similar and dissimilar ontology vertex pairs. γs and
γd are two balance parameters which are used to tradeoff between similar and dissimilar ontology
vertex pairs. For instance, these two ontology loss functions can be formulated as follows:

Ls(·) =
∑

(vi,vj)∈S

‖vi − vj‖2W, (5)

Ld(·) =
∑

(vi,vj)∈D

‖vi − vj‖2W. (6)

On how to choose a suitable regularizer, we use the following Frobenius norm based regularizer:

g(W) = ‖W‖F =

√√√√ p∑
i,j=1

w2
ij, (7)

where it can avoid too large elements appearing in the matrix W but it’s unable to use the
unlabeled ontology information. To solve this defect, we consider the regularization framework
which includes the unlabeled data information.

2.3 Using Unlabeled Ontology Data

Now, we focus on how to incorporate the unlabeled ontology data within the above regulariza-
tion learning framework.

Let N(v) be the set of the nearest neighbors of the ontology vertex v which are determined in
view of standard Euclidean distance. For fixed W with n ontology vertices, the weight matrix
ω ∈ Rn×n = [ωij]

n
i,j=1 is determined by the following rule: ωij = 1 if vi ∈ N(vj) or vj ∈ N(vi),

and ωij = 0 otherwise.

For matrix W, let UT : Rp → Rm be a kind of corresponding linear mapping with U =
[u1, · · · ,um] ∈ Rp×m such that it stratifies W = UUT and thus:

d(vi, vj) = ‖UT (vi − vj)‖2 = (vi − vj)TUUT (vi − vj) = (vi − vj)TW(vi − vj). (8)

Clearly, the unlabeled ontology data information is contained in weight matrix ω and we can
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apply the Laplacian regularizer described as follows:

g(W) =
1

2

n∑
i,j=1

‖UTvi −UTvj‖2ωij (9)

=
m∑
k=1

uT
kV(D− ω)VTuk (10)

=
m∑
k=1

uT
kVLVTuk = Tr(UTVLVTU) (11)

= Tr(VLVTUUT ) = Tr(VLVTW), (12)

where V = (v1, · · · , vn) is ontology information matrix, D is a diagonal matrix with Dii =
∑

j ωij,
L = D− ω is Laplacian matrix defined on the ontology graph, and Tr(·) is denoted as the trace
of matrix.

Now, the Laplacian based ontology regularized distance funciton learning can be denoted by

min
W�0

Tr(VLVTW) + γs
∑

(vi,vj)∈S

‖vi − vj‖2W + γd
∑

(vi,vj)∈D

‖vi − vj‖2W. (13)

In the very special situation, the dissimilar factor γd → 0, the ontology optimization prob-
lem (13) will be degenerated to the trivial solution W = 0. To avoid this case, the ontology
optimization problem (13) can be further revised to a new one:

min
W�0

Tr(VLVTW) + γs
∑

(vi,vj)∈S

‖vi − vj‖2W + γd
∑

(vi,vj)∈D

‖vi − vj‖2W, (14)

s.t. logdet(W) ≥ 0,

where the restrictive condition logdet(W) ≥ 0 implies that it can avoid the trivial solution W = 0.

By simply calculating, the complexity of ontology learning algorithm described above is O(n2)
where n is the size of ontology data.

3 Experiments

In this section, two simulation experiments relevance ontology similarity measure and ontology
mapping are designed in the following section. We use a vector with p dimension to express each
vertex’s information to make it realizable to be close to the setting of ontology algorithm. By
the way, the vector contains some information like the name, instance, attribute and structure of
vertex.

3.1 Experiment on ontology similarity measuring

“PO” ontology, which can be referred to http: //www.plantontology.org are chosen as a tool
in the first experiment, and the basic structure of it is described in Figure 1. What’s more, the
quality of the experiment is measured by P@N (see Craswell and Hawking [25] for more details).
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With the high validity of our algorithm, it shows great prospect for promoting the development
of plant ontology. It’s well known for the researchers, the plant ontology are often used to represent
plant anatomy (such as plant organ, plant cell, whole plant, portion of plant tissue, and vascular
system, etc), morphology and stages of development for all plants(such as plant tissue development
stage , leaf development stage , whole plant development stage, seed development stage, and
sporophyte development stage, etc.). The plant ontology is pretty helpful to build a semantic
framework for meaningful cross-species queries which cross the gene expression and phenotype
data sets from plant genomics and genetics experiments, which embraces quite promising future.

Fig. 1: The structure of “PO” ontology

In order to prove whether our algorithm is effective, we borrow the ontology algorithms raised
in Lan et al., [11], Gao and Shi [12] and Gao et al., [13] to work on the ontology graph G. Then,
based on P@N criterion, we take the three ways to determine the precision ratio. Parts of the
data can refer to Table 1.

Table 1: The experiment results of ontology similarity measure

P@3 average P@5 average P@10 average

precision ratio precision ratio precision ratio

Algorithm in our paper 0.4232 0.5293 0.6207

Algorithm in [11] 0.2837 0.3574 0.5425

Algorithm in [12] 0.3546 0.4383 0.6170

Algorithm in [13] 0.3191 0.3872 0.5723

From the Table 1, we can see clearly that when N =3, 5 or 10, the precision ratio obtained
through our algorithm is higher than that obtained by algorithms raised inLan et al., [11], Gao
and Shi [12] and Gao et al., [13]. Moreover, as N is becoming larger, the differences become more
obvious between them.
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3.2 Experiment on ontology mapping

“Humanoid Robotics” ontologies O2 and O3 (the structure of O2 and O3 can refer to Gao and
Zhu [17]) are chosen for our second experiment. Since the primary task here is to construct
ontology mapping between O2 and O3, P@N precision ratio criterion is also taken as a measure
to check the effectiveness of our algorithm. Then, we make the ontology algorithms introduced
in Lan et al., [11], Gao and Shi [12] and Gao et al., [13] work on an ontology graph, get their
precision ratio and compare them. Parts of data can refer to Table 2.

Fig. 2: “humanoid robotics” ontology O2

Fig. 3: “humanoid robotics” ontology O3

From the Table 2, we can see clearly that when N =1, 3 or 5, the precision ratio obtained
through our algorithm is higher than that obtained by algorithms raised in Lan et al., [11], Gao
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Table 2: The experiment results of ontology mapping

P@1 average P@3 average P@5 average

precision ratio precision ratio precision ratio

Algorithm in our paper 0.1538 0.4074 0.6778

Algorithm in [11] 0.1538 0.3077 0.5231

Algorithm in [12] 0 0.2821 0.4923

Algorithm in [13] 0.0769 0.3077 0.5385

and Shi [12] and Gao et al., [13]. In this way, our algorithm has higher validity in constructing
the ontology mapping between two humanoid robotics ontologies, which is pretty obvious.

4 Conclusions

As a validity model for data representation, management and computation, ontology has been
employed in a large number of engineering applications and has proved to have high efficiency.
In this article, we consider the ontology similarity measuring in view of distance calculating. The
two ontology vertices have high similarity if the geometric distance between their corresponding
vectors are small. The ontology data includes two special sets: S and D which are denoted
as the set of similarity vertices pair and dissimilarity vertices pair determined by experts. The
regularization framework is used for ontology learning and the information of unlabeled ontology
data is fully participated in the learning process by graph Laplacian technology. Finally, two
simulation experiments are manifested to verify the effectiveness of our new algorithm.
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