
Introduction

Several IVGTT models have been proposed and some are widely used [1–6]. All these mod-
els incorporate insulin secretion delay implicitly in ordinary differential equation (ODE)
model by using compartment-split technique or explicitly in delay differential equation
(DDE) models. In the procedure of IVGTT, overnight fast is required for the subject,
and then the subject is given a bolus of glucose infusion intravenously. Due to its rel-
atively simple structure and to its great clinical importance, the glucose/insulin system
has been the object of repeated mathematical modeling attempts [7–25]. However none of
the above work has discussed the two distributed delay model for IVGTT glucose-insulin
secretion. Many authors in the last decades proposed and studied different models for the
glucose-insulin homeostasis [1,2,4,6,26–28]. The models here adopted to estimate the time
course of the plasma insulin concentration are families of distributed delay models with
single and double kernel [4]. Such models allow to couple the dynamics of both glucose
and insulin kinetics in a unique extended system, whose solutions have been proven to
be positive, bounded, and globally asymptotically stable around the basal values of the
equilibrium point [6].

The fundamental idea of such tests is to examine the response of insulin, called in-
sulin sensitivity, after a large amount of glucose is infused into ones body. To this end,
several glucose tolerance tests have been developed and applied in clinics and experi-
ments [1, 29–32]. A commonly used protocol is the intravenous glucose tolerance test
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(IVGTT). One popular approach of the analysis is as follows: (1) formulate or choose a
well-formulated model based on physiology. (2) estimate the parameters of the IVGTT
model with experimental data, and then (3) the parameter values are used to obtain
physiological information, for example, the insulin sensitivity.

All discrete and distributed delay differential equation models for IVGTT explicitly
involve a time delay between the rise in glycemia and the correspondingly stimulated
insulin secretion. Observable delay effects are often gradual (distributed) and smooth in
most physiological systems, it is thus natural to utilize distributed delay parameters rather
than discrete. Some authors proposed the IVGTT glucose insulin model with distributed
delays [4, 33]. All IVGTT models in [3–5, 34, 35] follow the same criterion, which yields a
value of around 20 min. It is well known that a large delay can destabilize a system [11].
An accurate assessment of the delay can therefore play a critical role in elucidation of
the metabolic portrait. We then compare the simulation profiles obtained from all these
models with two distributed delays also more general and realistic Michaelis-Menten form

G(t)
αG(t)+1 for the glucose-insulin system is proposed in this article.

The paper is organized as follows. In Section 2, we discuss the model description for
kernel delays. In Section 3, we make connections to extend the various stability theorems
for our proposed model. We also use the sensitivity functions to evaluate the sensitivity
of the glucose-insulin has been analyzed in Section 4. In section 5, we perform numerical
calculations and we end this paper with discussion in Section 6.

2 Dynamical Model for the IVGTT glucose-insulin system

2.1 Single - kernal delay models

This section is devoted to present a family of single kernel distributed-delay differential
models for the glucose-insulin homeostasis, [4] (the name of the system parameters are the
same adopted in [4] where also their meaning is explained):

dG(t)

dt
= −b1G(t)− b4I(t)G(t) + b7,

dI(t)

dt
= −b2I(t) + b6

∫ ∞

0
ω(s)G(t− s)ds, (1)

with initial conditions

G(t) ≡ Gb, ∀t ∈ (−∞, 0), G(0) = Gb + b0,

I(t) ≡ Ib, ∀t ∈ (−∞, 0), I(0) = Ib + b3b0. (2)

The parameter involves in system (1) and (2) are described in Table I.
The weight function ω(t) is a non negative square integrable function defined on R+ =

[0,∞) such that ∫ ∞

0
ω(t)dt = 1,

∫ ∞

0
tω(t)dt < +∞ (3)

The finite quantity △a =
∫∞
0 tω(t)dt < +∞ has the meaning of an average time delay.

In therefore, we define G(t

J. Comp. Matha. 1 (2017) 1-31 P. Krishnapriya et.al 2



J. Comp. Matha. 1 (2017) 1-31 P. Krishnapriya et.al 3

constant rate spontaneous glucose decay, the second term models the insulin-dependent
glucose disappearance rate, while the third term is necessary in order to have an asymptotic
decay to the basal glycemia level and I(t) describes the variation of the insulin plasma
concentration as a function of two terms: the first models the insulin catabolism (constant
rate insulin decay), the second models the pancreatic insulin secretion as an integral
function of the past glycemia. Physiologically, the delay integral kernel of equation (2) from
system (1) accounts for the sensitivity of the pancreas to the concentration of blood glucose:
the pancreas output insulin at a given instant is proportional to a suitably weighted average
of the past blood glucose concentrations. A liver first pass effect is taken into account in
the second of equation (2) from system (1), where an instantaneous insulin release at time
0, is assumed, proportional to the equivalent concentration of the glucose bolus b0.

The model’s free parameters are only five (b0 through b4). In fact, assuming the subject
is at equilibrium at (G∗ = Gb, I

∗ = Ib) for a sufficiently long time (t → ∞), then

0 = −b1Gb − b4IbGb + b7,

0 = −b2Ib + b6Gb. (4)

together imply b7 = b1Gb + b4IbGb, b6 = b2
Ib
Gb

.
As far as what concern the weighting function ω(t), in the integral in system (1), its

shape characterizes the choice of the model according to the features of individuals to
whom it is related. For instance, normal individuals, showing a prompt and appropriate
insulin response to hyperglycemic stimuli, will likely have a promptly rising and falling
ω curve. In the above said model (1), they discussed to guarantee qualitative properties
for the entire (albeit smaller) family, without further specification of the kernel ω, subject
only to mild integrability conditions. This approach to the numerical quantification of the
homeostasis of the glucose insulin system from the mathematical modeling of the IVGTT
has the advantage of explicitly representing the two arms of the whole system together
(insulin sensitivity of tissues and pancreatic sensitivity to circulating glucose), allowing
the eventual simultaneous fitting of glucose and insulin concentration data.
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Table I:
Parameters description for the Dynamical model

Parameters Units Biological Description
b0 mg/dl Theoretical increase in plasma concentration

over basal glucose concentration at time zero after
instantaneous administration and redistribution

of the I.V. glucose bolus

b1 min−1 Spontaneous glucose first order disappearance rate constant

b2 min−1

b3 pM/(mg/dl) The first-phase insulin concentration increase,
increase in the concentration of glucose
at time zero due to the injected bolus

b4 min−1pM−1 The constant amount of insulin-dependent glucose
disappearance rate of plasma insulin concentration

b6 min−1pM/ The constant amount of second-phase insulin release
rate of average plasma glucose concentration per unit time.

(mg/dl)

b7 (mg/dl)min−1 The constant increase in plasma glucose concentration due
to the constant baseline liver glucose

2.2 Double - kernal delay models

An analytic methodology is introduced in order to recast the distributed-delay nonlinear
models into a nonlinear systems without delay, in front of an increase of the state space
dimension. The availability of real-time data on the insulin concentration is a prerequisite
for the development of an artificial pancreas controlling in real time the blood glucose level
with optimum insulin infusions from an in vivo pump [33]. They dealt with the problem
of the state reconstruction, by applying the theory of asymptotic state observation for
nonlinear model systems, has been explored for distributed-delay kernel models of glucose-
insulin homeostasis without Michaelis-Menten form G(t)

αG(t)+1 . In the present section a

double-kernel distributed delay model is investigated, which differs from model (1). The
delay kernel is also present, where the first kernel I(t− s) must be considered for a change
in insulin concentration to affect plasma glucose production, the second kernel G(t − s)
denotes the delay before the pancreas can respond to change in blood glucose. We assume
instead that the insulin-dependent net glucose tissue uptake takes the more general and
realistic Michaelis-Menten form G(t)

αG(t)+1 , which has maximum capacity b4
α . The parameter

α, in the response function G(t)
αG(t)+1 is non-negative. 1

α is the half-saturation constant.
The reason for this is simply due to the limit of time and the capacity of insulin’s ability
of digesting glucose. Retaining the same names for the parameters used in Table I, the
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model is as follows:

dG(t)

dt
= −b1G(t)− b4G(t)

αG(t) + 1

∫ ∞

0
ωI(s)I(t− s)ds+ b7,

dI(t)

dt
= −b2I(t) + b6

∫ ∞

0
ωG(s)G(t− s)ds. (5)

with initial conditions

G(t) ≡ Gb, ∀t ∈ (−∞, 0), G(0) = Gb + b0,

I(t) ≡ Ib, ∀t ∈ (−∞, 0), I(0) = Ib + b3b0. (6)

Note that a subscript has been added to the weighting functions ω to distinguish between
glucose and insulin kinetics. The properties of the two kernels ωI and ωG are similar; in
particular conditions (3), are both true. In this work the assumption that ωG(t) ≡ ωI(t) ≡
ω(t) as considered, that means γI = γG = γ, according to our model (5). By introducing
the following further state components as follows:

ηG(t) =

∫ ∞

0
ω(s)I(t− s)ds,

ξG(t) =

∫ ∞

0
e−γ(t−s)I(s)ds,

ηI(t) =

∫ ∞

0
ω(s)G(t− s)ds,

ξI(t) =

∫ ∞

0
e−γ(t−s)G(s)ds. (7)

In order to solve the state estimation problem, a first order differential system has to be
achieved from (5). The following nonlinear system is obtained from (5),

ẋ1(t) = −b1x1(t)−
b4x1(t)x3(t)

αx1(t) + 1
+ b7,

ẋ2(t) = −b2x2(t) + b6x5(t),

ẋ3(t) = −γx3(t) + γ2x4(t),

ẋ4(t) = −γx4(t) + x2(t),

ẋ5(t) = −γx5(t) + γ2x6(t),

ẋ6(t) = −γx6(t) + x1(t), (8)

where it has been posed:

X(t) =



x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)

 =



G(t)
I(t)
ηG(t)
ξG(t)
ηI(t)
ξI(t)

 ∈ R6
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The initial conditions are given below:

x1(0) = Gb + b0, x2(0) = Ib + b3b0,

x3(0) = Ib, x4(0) =
Ib
γ
,

x5(0) = Gb, x6(0) =
Gb

γ
.

2.3 Analysis of the model

In this section we study the well-posedness of the model, feasibility region and Lyapunov
stability of the unique positive equilibrium for the model (5).

Well-posedness of the model and feasibility region:
In Ref [36], we consider, for each α > 0, the Banach space of fading memory type,

UCα = {ϕ ∈ C((−∞, 0],R) : s → ϕ(s)eαs is uniformly continuous on

(−∞, 0] and sup
s≤0

|ϕ(s)|eαs < ∞}

endowed with the norm

||ϕ||α = sup
s≤0

|ϕ(s)|eαs. (9)

From [37] standard existence and uniqueness results hold for system (5) in UCα. Next,
we analyze (5), in a biologically feasible region for glucose-insulin system.

Proposition 2.1. As in [38], the time derivatives of the positive solutions (5) are bounded.

3 Constructions of Stability Analysis

It can be shown that the system admits only one equilibrium point with positive concen-
trations and the linearized system around the unique equilibrium (x∗1, x

∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6) by

substituting, u1 = x1−x∗1, u2 = x2−x∗2, u3 = x3−x∗3, u4 = x4−x∗4, u5 = x5−x∗5, u6 = x6−x∗6
in (8), the model takes the following form,

du1
dt

= −
(
b1 +

b4x
∗
3

(αx∗1 + 1)2

)
u1 −

b4x
∗
1

(αx∗1 + 1)
u3,

du2
dt

= −b2u2 + b6u5,

du3
dt

= −γu3 + γ2u4,

du4
dt

= −γu4 + u2,

du5
dt

= −γu5 + γ2u6,

du6
dt

= −γu6 + u1. (10)

The above system (10) takes the matrix form as follows:

ẋ = Ax (11)

where x = (u1, u2, u3, u4, u5, u6),
T and
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A =



−
(
b1 +

b4x∗
3

(αx∗
1+1)2

)
0

(
−b4x∗

1
αx∗

1+1

)
0 0 0

0 −b2 0 0 b6 0
0 0 −γ γ2 0 0
0 1 0 −γ 0 0
0 0 0 0 −γ γ2

1 0 0 0 0 −γ


.

Definition 3.1. If all eigenvalues of matrix A(aij)6×6 are located on the open left side of
complex plane (that is, Re λi(A) < 0, i,j = 1,2,...6.) then A is said to be Hurwitz stable. If
all the eigenvalues of A lie on the closed left side of complex plane (that is, Re λi(A) ≤ 0,
i,j = 1,2,...6) and if Re λj0(A) = 0, λj0 only correspond to simple elementary divisor of
A, then A is said to be quasi-stable.

Example 1: The matrix A is asymptotically stable for F1 data. (see Table II)

Proof. The Eigenvalues for F1 data as such as follows,

−.2102480670 + 0.2485809627× 10−1I,−.1791492656 + 0.1682367033× 10−1I,

−0.5087274240× 10−1,−.2274329705,

−.1791492656− 0.1682367033× 10−1I,−.2102480670− 0.2485809627× 10−1I

Using the above definition 3.1, if all eigenvalues of matrix A(aij)6×6 are located on the
open left side of complex plane (that is, Re λi(A) < 0, i,j = 1,2,...6.) then A is said to be
Hurwitz stable. �

Remark 1.

(i) If A is a Hurwitz matrix, we write fn(λ) ∈ H. (H denotes Hurwitz polynomial)

(ii)In general, if Re λi(A) ≤ 0, (i = 1, 2, ..., n) the polynomial fn(λ) is called Routh poly-
nomial and denoted by fn(λ) ∈ qH.

(iii)Obviously, A is quasi-stable only if fn(λ) ∈ qH, and it is easy to prove that f(λ) ∈ qH
only when ai ≥ 0 (i = 1, 2, ..., n).

Summing up, we have the following lemma,

Lemma 3.1. fn(λ) ∈ qH if and only if ∀ϵ > 0, hϵ(λ) = fn(λ+ ϵ) ∈ qH

Corollary 3.2. hϵ ∈ H if and only if all major subdeterminants of Mhϵ are greater than
zero, where H denotes Hurwitz polynomial.

Remark 2. If hϵ ∈ H, then we can ignore higher order terms of ϵ in every term of
Mhϵ, which is denoted as MGϵ. Thus, we obtain a new criterion for Hurwitz method.
That is, all major subdeterminants of Mhϵ are greater than zero if and only if all major
subdeterminants of MGϵ are greater than zero.

Example 1: Verify lemma 3.2 for F1 data.

b1 = 0.0509, b2 = 0.2062, b4 = 0.000000129, b6 = 0.135, γ = 0.2, α = 0.01, x∗1 = 78.9726
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Proof. let

hϵ(λ) = fn(λ+ ϵ)

= a0 + a1(λ+ ϵ) + a2(λ+ ϵ)2 + a3(λ+ ϵ)3 + a4(λ+ ϵ)4 + a5(λ+ ϵ)5 + a6(λ+ ϵ)6

= λ6 + (6ϵ+ .894)λ5 + (4.470ϵ+ .317 + 15ϵ2)λ4 + (1.268ϵ+ 8.940ϵ2 + 0.564e−1 + 20ϵ3)λ3

+(1.902ϵ2 + .1692ϵ+ 8.940ϵ3 + 0.51e−2 + 15ϵ4)λ2 + (0.2e−2 + 6.ϵ5 + .1692ϵ2

+1.268ϵ3 + 4.470ϵ4 + 0.102e−1ϵ)λ+ 0.355e−5 + 0.51e−2ϵ2 + 0.2e−2ϵ

+0.564e−1ϵ3 + .894ϵ5 + ϵ6 + .317ϵ4

Mhϵ =



0.102e−1ϵ + 0.2e−2 0.2e−2ϵ + 0.355e−5 0 0 0 0

8.940ϵ2 + 1.268ϵ .1692ϵ + 0.51e−2 0.102e−1ϵ + 0.2e−2 0.2e−2ϵ + 0.355e−5 0 0

6ϵ + .894 4.470ϵ + .317 8.940ϵ2 + 1.268ϵ .1692ϵ + 0.51e−2 0.102e−1ϵ + 0.2e−2 0.2e−2ϵ + 0.355e−5

0 0 6ϵ + .894 4.470ϵ + .317 8.940ϵ2 + 1.268ϵ .1692ϵ + 0.51e−2

0 0 0 1 6ϵ + .894 4.470ϵ + .317
0 0 0 0 0 1

 ,

and

MGϵ =



0.102e−1ϵ + 0.2e−2 0.2e−2ϵ + 0.355e−5 0 0 0 0

1.268ϵ .1692ϵ + 0.51e−2 0.102e−1ϵ + 0.2e−2 0.2e−2ϵ + 0.355e−5 0 0

6ϵ + .894 4.470ϵ + .317 1.268ϵ .1692ϵ + 0.51e−2 0.102e−1ϵ + 0.2e−2 0.2e−2ϵ + 0.355e−5

0 0 6ϵ + .894 4.470ϵ + .317 1.268ϵ .1692ϵ + 0.51e−2

0 0 0 1 6ϵ + .894 4.470ϵ + .317
0 0 0 0 0 1

 .

Now we compute the major subdeterminants of MGϵ as follows:

△1 = 0.102e−1ϵ+ 0.2e−2 > 0,

△2 =

[
0.102e−1ϵ+ 0.2e−2 0.2e−2ϵ+ 0.355e−5

1.268ϵ .1692ϵ+ 0.51e−2

]
> 0, when 0 < ϵ << 1.

Proceeding like this way, we get

△6 > 0, when 0 < ϵ << 1.

Hence

hϵ(λ) = fn(λ+ ϵ)

�
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Now, we consider the general n-dimensional autonomous system:

dx

dt
= f(x), f(0) = 0, (12)

where x = (x1, ..., xn)
T ∈ Rn, f = (f1, f2, ..., fn) ∈ C[Ωh,R], where Ωh = {x : ||x|| ≤ h}.

Theorem 3.3. let the zero solution of (11) and V (x) : R6 → R be a continuous differen-
tiable function (denoted by, V (x) ∈ C1[R6,R]) such that

(i) V (0) = 0,

(ii) V (x) > 0 ∈ R6 − {0},
(iii) V̇ (x) ≤ 0 ∈ R6 − {0}.
when x ≥ 1, then the zero solution is stable.

Theorem 3.4. If there exists positive definite function V (x) ∈ C1[R6,R] such that

dV

dt
< 0,

then the set S = {x|dVdt = 0, x ∈ R6} excludes x = 0, i.e., it does not include all positive half
trajectories which are nonzero. Then, the zero solution of (11) is said to be asymptotically
stable, if x = 1

Proof. Choose a Lyapunov function,

V (x) = xe−x, (13)

When 0 < xe−x < x, V is positive definite, and

dV

dt
=

∂V

∂x

dx

dt
,

= −e−x(x− 1)Ax if x = 1,

≤ 0.

Let dV
dt = 0 yields S = {x|x = 0}. But x = 0, does not include all positive half trajectories

which are nonzero. Therefore, the zero solution of (11) is asymptotically stable �

Definition 3.2. [39] If a function ϕ ∈ [R+,R+], where R+ = [0,+∞), or ϕ ∈ C([0, h],R+)
is monotonically strictly incresing, and ϕ(0) = 0, we call ϕ a Wedge function, or simply
call it a K class function, denoted by ϕ ∈ K.

Definition 3.3. [39] Let the zero solution of (12) is said to be uniformly stable with
respect to t0, if ∀ϵ > 0, ∃δ(ϵ) > 0 (δ(ϵ) is independent of t0) such that ||x0|| < δ, implies
||x(t, t0, x0)|| < ϵ for t ≥ t0.

Theorem 3.5. The zero solution of (11), is uniformly stable if and only if V (x) ∈
C1[R6,R] with infinitesimal bound such that

D+V (x) ≤ 0.
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Proof. Using the given condition, ∃ϕ1, ϕ2 ∈ K such that

ϕ1(||x||) ≤ V (x) ≤ ϕ2(||x||),

Then, ∀ϵ > 0(ϵ < h) such that by taking δ = ϕ−1
2 (ϕ1(ξ)), i.e., ϵ = ϕ−1

1 (ϕ2(ξ)), here the
initial condition t0 = 0, then we have,

ϕ1(||x(t, 0, x0)||) ≤ V (x(t, 0, x0)) ≤ V (x0) ≤ ϕ2(||x0||) < ϕ2(δ), (14)

when ||x0|| < δ, it follows that

||x(t, 0, x0)|| ≤ ϕ−1
1 (ϕ2(δ)) = ϵ, for t ≥ 0.

However, δ = ϕ−1
2 (ϕ1(ϵ)) = δ(ϵ) is independent of (t0), here t0 = 0. So, the zero solution

of (11) is uniformly stable.

To prove the necessary condition, let we construct

V (x) = xe−x inf
0≤τ≤t

||η(τ, t, x)||

then V (x) is continuous, and V (x) ≤ x||η(τ, t, x)|| = x||x||. So V (x) is infinitesimally
upper bounded.

Next we prove that V (x) is positive definite. Since the zero solution of (11) is uniformly
stable, ∀ϵ > 0, ∃ δ(ϵ), when ||q|| < δ, for all τ ≥ 0 and t ≥ τ , we have

||x(τ, t, q)|| < ϵ, (15)

when ϵ < ||x|| ≤ h, for all t ≥ τ ≥ 0, we have,

η(τ, t, x) ≥ δ > 0.

Otherwise, for certain τ∗, x∗, t∗, ϵ ≤ ||x∗|| ≤ h, 0 ≤ τ∗ ≤ t∗. We obtain,

||η(τ∗, t∗, x∗))|| > δ.

If we take q = η(τ∗, t∗, x∗)), then we get x∗ = ||η(t∗, τ∗, q)||. Using the Definition 3.2, when
||q|| = ||η(τ∗, t∗, x∗))|| < δ, η(t∗, τ∗, q) < ϵ holds for all t = t∗ ≥ τ∗. which contradicts
that ||x∗|| ≥ ϵ. Therefore (15) is true. Hence V (x) is positive definite.

And now we have to prove that D+V (x) ≤ 0. Since x = η(t, 0, q) along an arbitrary
solution of (11), we have,

V (x) = V (η(t, 0, q)),

= xe−x inf
0≤τ≤t

||η(τ, t, (η(t, 0, q)||,

= xe−x inf
0≤τ≤t

||η(τ, 0, q||.

To see that V (x) is a monotone function of x. As a result, D+V (x) ≤ 0 is true. Hence
the proof. �
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Definition 3.4. [39] In general for autonomous system, the function W (x) ∈ C[Rn,R] is
said to be positive definite and radially unbounded if W (x) is positive definite and x → ∞
implies W (x) → ∞.

Remark 3.

(i) The above above Definition 3.4 does not hold for our system (11).

(ii) Therefore the radially unbounded condition does not hold for our positive definite
function.

(iii) Hence our system (11) is not globally asymptotically stable.

Theorem 3.6. Let f(x) ∈ C1[R6,R], f(0) = 0, and f satisfy the Lipschitz condition for
x. Then the zero solution of (11), is globally exponentially stable if and only if there exists
V (x) ∈ C1[R6,R], such that

(i) ||x|| ≤ V (x) ≤ K(α)||x||, x ∈ Sα = {x : ||x|| ≤ α, α > 0};

(ii) dV (x)
dt ≤ −pqV (x), where 0 < p < 1, q > 0, p, q are constants.

Proof. For all α > 0 when x0 ∈ Sα, let x(t) = x(t, 0, x0) be the solution of (11) and t0 = 0,
by condition (ii), we have

dV (x)

dt
≤ −pqV (x).

Now, we consider the comparison equation,

du

dt
= −pqu.

Let u0 = V (x0), then

u(t, 0, u0) = u0e
−pqt,

We obtain

V (x) ≤ u0e
−pqt = V (x0)e

−pqt, t ≥ 0.

By conditions (i), we have

||x|| ≤ V (x) ≤ K(α)||x0||e−pqt ≤ K(α)||x0||e−λt, λ = pq, (16)

i.e.,

||x(t, 0, x0)|| ≤ K(α)||x0||e−λt, t ≥ 0.

So the zero solution of (11) is globally exponentially stable.

To prove the necessary condition, let the zero solution of (11) be globally exponentially
stable. Then there exists constant q > 0 such that ∀α > 0, ∃K(α) > 0, when x0 ∈ Sα,

||x(t, 0, x0)|| ≤ K(α)||x0||e−pt holds.
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For 0 < q < 1, define a function:

V (x) = sup
τ≥0

||x(t+ τ, x)||epqτ .

Then, ∀x ∈ Sα, we have

(i)

||x|| ≤ V (x) ≤ sup
τ≥0

,K(α)||x||e−pτepqτ ,

≤ K(α)||x|| sup
τ≥0

e−(1−q)pτ ,

≤ K(α)||x||.

i.e.,

||x|| ≤ V (x) ≤ K(α)||x||.

(ii) let x∗ = x(t+ h, x). It follows that,

V (x+ h, x∗) = sup
τ≥0

||x(t+ h+ τ, x∗)||epqτ ,

= sup
τ≥0

||x(t+ h+ τ, x)||epqτ ,

≤ sup
τ≥0

||x(t+ h, x)||epqτe−(pqh),

= V (x)e−(pqh).

Furthermore, we obtain

V (x+ h, x∗)− V (x))

h
= V (x)

e−(pqh) − 1

h
.

Now, we have

dV (x)

dt
= lim

h→0

V (x+ h, x∗)− V (x))

h
,

≤ lim
h→0

V (x)
e−(pqh) − 1

h
,

= V (x) lim
h→0

e−(pqh) − 1

h
,

= −pqV (x).

i.e.,

dV (x)

dt
≤ −pqV (x).

Hence the proof. �

Remark 4. Summing up, we conclude that the zero solution x of (11) is said to be stable,
asymptotically stable, uniformly stable and globally exponentially stable, if x ≥ 1.
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4 Sensitivity Analysis

The possibility to reliably estimate an index of sensitivity is essential to any model which
aims at being useful to diabetologists. Parameters in the dynamical system exerting the
most influence on the system state can be established through sensitivity analysis. Here,
we show the sensitivity analysis with respect to the parameter is considered. It is quite
usual for a model to display high sensitivity to small variations in some parameters, while
displaying robustness to variations in other parameters. However, for simplicity we will
use the so called “direct approach” to find sensitivity functions of system (10) in [40]. In
the following the sensitivity functions with respect to an arbitrary parameter q, for the
system (10), are denoted by,

ui,q =
∂ui(t)

∂q
, i = 1, 2, ...n (17)

The corresponding sensitivity system (10) with respect to the parameter ‘b6’ is as follows,

u1,b6 = −
(
b1 +

b4u3
(αu∗1 + 1)2

)
u1,b6(t, b6)−

b4u
∗
1

(αu∗1 + 1)
u3,b6(t, b6),

u2,b6 = −b2u2,b6(t, b6) + b6u5,b6(t, b6) + u5(t),

u3,b6 = −γu3,b6(t, b6) + γ2u4,b6(t, b6),

u4,b6 = −γu4,b6(t, b6) + u2,b6(t, b6),

u5,b6 = −γu5,b6(t, b6) + γ2u6,b6(t, b6),

u6,b6 = −γu6,b6(t, b6) + u1,b6(t, b6). (18)

The corresponding sensitivity system (10) with respect to the parameter ‘b4’ is as follows,

u1,b4 = −
(
b1 +

b4u
∗
3

(αu∗1 + 1)2

)
u1(t)−

b4u
∗
1

(αu∗1 + 1)2
u3,b4(t, b4)

− u∗1
(αu∗1 + 1)

u3(t)−
u∗3

(αu∗1 + 1)2
u1(t),

u2,b6 = −b2u2,b4(t, b4) + b6u3,b4(t, b4),

u3,b6 = −γu3,b4(t, b4) + γ2u4,b4(t, b4),

u4,b6 = −γu4,b4(t, b4) + u2,b4(t, b4),

u5,b6 = −γu5,b4(t, b4) + γ2u6,b4(t, b4),

u6,b4 = −γu6,b4(t, b4) + u1,b4(t, b4). (19)

The semi-relative sensitivity solutions (depicted in Fig.1(a)-4(f)) are calculated by sim-
ply multiplying the unmodified sensitivity solutions by a chosen parameter which provides
information concerning the amount the state will change when that parameter is doubled
(i.e., a perturbation on the order of b6 and b4). It is best to calculate this type of sensitivity
solution to obtain a more thorough understanding of the dynamics.
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Fig. 1(a)-1(f) show the semi-relative sensitivity analysis for the system (18) is subject
to F1 data, from Table II respectively.
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Fig. 2(a)-2(f) show the semi-relative sensitivity analysis for the system (18) is subject
to R1 data, from Table II respectively.

Comparison between the plots 1(a) - 2(f) show that, the parameter b6 is sensitive in
1(d), 1(f), 2(b), 2(c) and 2(f). Therefore we observe that small change in b6 (i.e., The
constant amount of second-phase insulin release rate of average plasma glucose concentra-
tion per unit time) can produce significant changes in the above said figures. Other than
the remaining figures show that negatively proportion with increasing the initial function
and it is very sensitive in the early time intervals and the sensitivity decreases by time to
be insensitive in the steady state.
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Fig. 3(a)- 3(f) show the semi-relative sensitivity analysis for the system (19), is subject
to F1 data, from Table II respectively.
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Fig. 4(a)-4(f) show the semi-relative sensitivity analysis for the system (19) subject to
R1 data, from Table II respectively.

Comparison between the plots 3(a) - 4(f) show that, the parameter b4 is sensitive in
3(a), 3(d), 3(e), 4(a), 4(d) and 4(e). Therefore we observe that small change in b4 (i.e.,
The constant amount of insulin-dependent glucose disappearance rate of plasma insulin
concentration) can produce significant changes in the above said figures. Other than the
remaining figures show that negatively proportion with increasing the initial function and
it is very sensitive in the early time intervals and the sensitivity decreases by time to be
insensitive in the steady state.

5 Application and Numerical Illustration

In this section, we carry out some numerical illustrations to display the qualitative be-
haviours of model (10) (see Figs. 6 (a)-10), fit the model to experimental data of glucose
insulin homeostasis. We present the graphical representation of the dynamical system
with a set of parameter values in Table II, using with the commercial software package as
MAPLE.

Data from 40 healthy volunteers (18 males and 22 females, average anthropometric
characteristics reported in Table II), who had been previously studied in several proto-
cols at the Catholic University Department of Metabolic Diseases were analyzed in [35].
All subjects had negative family and personal histories for Diabetes Mellitus and other
endocrine diseases, were on no medications, had no current illness and had maintained a
constant body weight for the six months preceding each study. For the three days preced-
ing the study each subject followed a standard composition diet (55% carbohydrate, 30%
fat, 15% protein) ad libitum with at least 250 g carbohydrates per day.

We also compare the solution (10), using the Table II data values for our model. It is
known that unique equilibrium point is stable if all the roots of the characteristic equations
of (10) have negative real parts. (roots are located on the open left side of the complex
plane i.e., Re λi < 0, i = 1, 2, ..., 6).

The following Table III contains the eigenvalue for the unique positive steady states.
The values γ is taken from [33] and other parameter values are taken from [38]. Here R1
and R2 denote the minimum and maximum range values for 40 subjects healthy volunteers
and these values are taken from [35].
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5.1 Applications

For example, when

b1 = 0.0509, b2 = 0.2062, b4 = 0.000000129, b6 = 0.135, γ = 0.2, α = 0.01, x∗1 =
78.9726, x∗3 = 51.7037,

these parameter values are taken from the experimental subject in [6]. The system (5), as
follows

dG(t)

dt
= −0.0509G(t)− 0.000000129G(t)

0.01G(t) + 1

∫ ∞

0
ωI(s)I(t− s)ds+ 4.02,

dI(t)

dt
= −0.2062I(t) + 0.135

∫ ∞

0
ωG(s)G(t− s)ds. (20)

The unique positive steady state (G∗, I∗) is given by

G∗ = 78.9726, I∗ = 51.7037

It is easy to verify that the conditions of Theorem 3.3, for using the initial conditions
(Table II), we proceed the linearized system for (20) as follows,

dx1(t)

dt
= −

(
0.0509 +

0.000000129× 51.7037

(0.01× 78.9726 + 1)2

)
x1(t)−

0.000000129× 78.9726

(0.01× 78.9726 + 1)
x3(t),

dx2(t)

dt
= 0.2062x2(t) + 0.135x5(t),

dx3(t)

dt
= −0.2x3(t) + 0.04x4(t),

dx4(t)

dt
= −0.2x4(t) + x2(t),

dx5(t)

dt
= −0.2x5(t) + 0.04x6(t),

dx6(t)

dt
= −0.2x6(t) + x1(t). (21)

and the characteristic equation of (21) becomes,

△(λ) = λ6 + 1.057100378λ5 + .4561759604λ4 + .1021006171λ3

+0.1234617001× 10−4λ2 + 0.7472216598× 10−4λ

+0.1679092976× 10−4 (22)

We obtain the characteristic roots (22), are as follows,

−.2102480670 + 0.2485809627× 10−1I,−.1791492656 + 0.1682367033× 10−1I,

−0.5087274240× 10−1,−.2274329705,

−.1791492656− 0.1682367033× 10−1I,−.2102480670− 0.2485809627× 10−1I (23)

Now, we conclude that the IVGTT system (21), take the data for subject F1, all the
characteristic roots of the characteristic equation for the Generic IVGTT model have
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negative real parts. Therefore the above system (21) is always stable. The plots of the
characteristic equations as shown in Fig 5 (a) and 5 (b). Similarly we can prove that for
40 healthy volunteers subjects R1 and R2.

Fig. 5 (a) - 7 (b) shows that the glucose and insulin level for F1, R1 and R2 data for
different values of α.

Fig. 5 (a) and 5 (b): Plots the characteristic equation of (22) for the subject data F1
with different values of α.

Fig. 6 (a) - 7 (b) shows the minimum and maximum range value for 40 healthy volun-
teers of R1 and R2 data. The plots of the characteristic equation of the original system
(10), as shown below. The values are taken from Table II.

Fig. 6 (a) and 6 (b): Plots the characteristic equation of (10) for the subject data R1
with different values of α.
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Fig. 7 (a) and 7 (b): Plots the characteristic equation of (10) for the subject data R2
with different values of α.

Fig. 8. shows the solution trajectories of the system (21) versus time together with
the predicted time curves for the subject data F1.
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Fig. 9 and 10 show the solution trajectories of the system (10) versus time together
with the predicted time curves for the subject data R1 and R2.

Figure 8,9 and 10 portray three typical subjects with both insulin and glucose concen-
tration observations for the model (10). For the Minimal model, fitting was performed by
means of a Weighted Least Squares (WLS) estimation procedure, considering as weights
the inverse of the squares of the expectations and as coefficient of variation 1.5 percentage
for glucose and 7 percentage for insulin [1]. Here, our proposed model dealt for F1 data and
also the Anthropometric characteristic of subjects studied for R1 and R2 with Weighted
Least Square method. Comparison between all the mentioned data (Table II) attained
stable, if all the roots of the corresponding characteristic equation having negative real
parts. The plot of the characteristic equation and solution trajectories can be proved by
analytically (see Figures. 5(a)-7(b) and 8-10) for the different values of α.

5.2 Adomain decomposition method: Numerical Illustration

Adomian decomposition method is a powerful tool which enables to find analytical solu-
tions in case of our non-linear equations (10). This method has been successfully applied
to a system (10). For the non-linear systems, we usually derive a very good approxima-
tions to the solutions and it was shown in figure (Using the Table II, we can see for F1
data).
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Computing the Adomian polynomials by the algorithm presented in [41], Adomian method
leads to the following scheme:

u1,0 = 320; u1,n+1 = −
(
b1 +

b4x
∗
3

(αx∗1 + 1)2

)∫ t

0
u1,n(t)dt−

b4x
∗
1

(αx∗1 + 1)

∫ t

0
u3,n(t)dt,

u2,0 = 907.25; u2,n+1 = −b2

∫ t

0
u2,n(t)dt+ b6

∫ t

0
u5,n(t)dt,

u3,0 = 51.7; u3,n+1 = −γ

∫ t

0
u3,n(t)dt+ γ2

∫ t

0
u4,n(t)dt,

u4,0 = 258.5; u4,n+1 = −γ

∫ t

0
u4,n(t)dt+

∫ t

0
u2,n(t)dt,

u5,0 = 79; u5,n+1 = −γ

∫ t

0
u5,n(t)dt+ γ2

∫ t

0
u6,n(t)dt,

u6,0 = 395; u3,n+1 = −γ

∫ t

0
u6,n(t)dt+

∫ t

0
u1,n(t)dt. (24)

The approximate solution of the above system (24), using adomain iterative procedure
with two iterations yields:

u1(t) = 320− 2.63345854t+ 0.06702425945t2 − 0.001169678653t3 + ...

u2(t) = 907.25− 176.409950t− 18.18786584t2 − 1.033212645t3 − ...

u3(t) = 51.7 + 17.111t2 − 1.061062166t3 − ...

u4(t) = 258.5 + 855.55t− 5.97533750t2 + 5.6642266114t3 − ...

u5(t) = 79 + 4.82t2 − 0.0175563897t3 + ...

u6(t) = 395 + 241t− 22.78327077t2 − 1.496543298t3 − .... (25)

The above solution (25), is coinciding approximately with the exact solutions of (10). The
graphs of u1(t), u3(t), u3(t), u4(t), u5(t) and u6(t) their approximations are shown in figures
(11 (a) - 11 (f)).
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Fig. 11(a)-11(f) shows that the iterative plots for the system (25) with subject data F1.

From the above plots (11 (a) - 11 (f)), we conclude that the system (10) is stable by
Adomain decomposition method. Hence, we have verified our system (10) is stable, using
our experimental data through analytically and numerically (by Adomain decomposition
method).

6 Discussion

This paper was focused on mathematical analysis of glucose-insulin IVGTT model with
two distributed delays. A potential application of our study here is to find better ways of
delivering insulin and timing of the intake of glucose. Previous studies are largely done on
Linear compartment models [42, 43] or on the minimal type models [44]. Our theoretical
and numerical findings are showing that in clinic applications. Another possible usage of
work is to design effective ways to estimate the involved parameters using sensitivity for
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clinic applications.
The Minimal Model has played a crucial role in modeling the glucose-insulin system

and it still is of practical use in many clinical settings. Nevertheless, many criticisms
have been raised in the last decade. Some questionable physiological assumptions are
that the pancreas is able to linearly increase its rate of insulin secretion with time, or
the introduction of a non-observable remote compartment to model the insulin effect on
the insulin-dependent glucose uptake. The main drawbacks are the lack of mathematical
coherence of the model and the lack of robustness in the parameter identification pro-
cedure. From a mathematical point of view, it has been proved for that the Minimal
Model is not coherent, since it does not admit a steady-state solution (corresponding to
the basal glycemia/insulinemia), but allows an unbounded increase of the state variables
for a reasonable set of model parameters. This is mainly due to the time-varying term
and the values the target glycemia assumes according to data, which are smaller than
the measured basal glycemia. This drawback clearly affects the estimate of the insulin
sensitivity index also, since it is defined as a steady-state index, but it is estimated by use
of a mathematical model which does not admit a steady-state solution. But our described
model with using Michaleis-Menton form overcome all the drawbacks of Minimal Model.
And it can easily verified from the figures (8-10) and also it converges to the steady state
solution.

The sensitivity functions are useful to evaluate which parameters are of a significant
uncertainty effect in the glucose and insulin concentration levels. Comparison between
F1, R1 and R2 can easily show that the parameters b6 and b4 are play crucial role in this
model. This was shown in the above Figures. (1(a)− 4(f)).

Pitchaimani et.al. [38] considered a two discrete delay for IVGTT model, they showed
that in theory, the IVGTT model [6] is best fitting for all existing data. But our model
shows that, it satisfies not only the existing data but also the 40 subjects (for the min-
imum range R1 and the maximum range R2, the parameters estimate from the WLS
Methods) [35].

For this model was fitted on data from each one of the experimental subjects. The
test were conducted at a level α = 0.01 . However, even accurate identification of the
parameter value from experimental data would not only to allow analytically but also
numerically (for the comparison of observed data) fitted on our model. The availability
of real-time data on the insulin concentration is a prerequisite for the development of an
artificial pancreas controlling in real time the blood glucose level with optimum insulin
infusions.
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