
J. Computing & Int. Systems (2023) 329–336

329

O
ri

g
in

a
l R

e
se

a
rc

h
 A

rt
ic

le

Journal of Computing and Intelligent Systems

 Journal homepage: www.shcpub.edu.in

 ISSN: 2456-9496

IMPLEMENTATION AND TESTING OF DEEP LINK IN AN ANDROID

APPLICATION
Dhruti Ranjan Mohanty#1, P. Thiyagarajan #2
Received on 30 JUL 2023, Accepted on 30 AUG 2023XX 2017

Abstract — Deep linking has emerged as a vital technology in

the field of mobile app integration and user experience. It

enables seamless transitions between different digital

contexts by allowing users to access specific content or

features within apps directly. This paper explores the concept

of deep linking, its implementation methods, challenges, and

the impact of deep linking on user engagement and app

discoverability. The paper begins by providing an overview of

deep linking, outlining its purpose and potential benefits. It

examines the technical aspects of deep linking, including the

various approaches such as Uniform Resource Identifiers

(URIs), custom URL schemes, Android App Links, and iOS

Universal Links. The implementation methods for deep linking

are discussed, emphasizing the importance of proper

integration into the apps code base. This paper examines the

idea of deep linking, its methods of implementation, the

difficulties brought on by device fragmentation, and the

problems with app installation status. User journeys will be

further streamlined and the promise of connected digital

experiences will be fully realized with further innovation and

breakthroughs in deep linking technologies.

Keywords - Deep Link, URI Scheme Handling, Android App Deep

Linking, Deferred Deep Linking, Testing Deep Links

I INTRODUCTION

The current generation came into being in a time of quick
technological development and easy access to knowledge. The
experiences and behaviours of these users have been
significantly shaped by Android applications. The ease,
enjoyment, and access to a large digital universe offered by
these programmes have become crucial parts of their
everyday lives. These programmes enable users to lead more
effective, organised, and balanced lives. A platform for
customization and self-expression is provided by Android
apps. People may use these programmes to share with the
world their distinctive personalities, skills, and opinions. The
process that the current generation connects and
communicates with one another has changed as a result of
Android applications like messaging apps and social media
platforms [18]. These applications let users to communicate
with friends, family, and co-workers anywhere in the world
through instant messaging, phone and video chatting, and
social networking capabilities. They have aided in the
communication of ideas, supported online groups, and
boosted interpersonal bonds. The way that today’s generation
obtains knowledge and receives information has been
revolutionized by Android applications. Users are now able to

easily access knowledge through Android applications,
broadening their horizons and intellectual interests. Since
their origin, when Android applications were isolated and
only capable of basic functions, they have advanced
significantly. The need to link apps and build a more
connected environment was recognized by developers as
technology improved. Deep linking, which enables precise
navigation to particular app content, has become a crucial
technique for seamless user experiences in the quickly
developing world of mobile applications. Deep linking
techniques have improved, but there are still issues with
implementing and testing them effectively, which prevents
this technology from being used to its full potential [13].
This paper aims to address the following problem: How can
deep linking technologies be tested and implemented in
Android apps to maximize user experience while ensuring
consistent and reliable navigation?

Sub Problem 1: How to effectively integrate Deep Links
considering variations in app architecture, framework
compatibility, and evolving Android standards?

Sub Problem 2: What automated testing approaches
and tools can be created to thoroughly check the
functioning of deep links within an Android app, spanning
a variety of usage situations, and requiring the least
amount of human intervention?

Sub Problem 3: What comprehensive set of best
practices and guidelines can be established for developers
to follow during the implementation and testing phases of
deep linking, ensuring consistency and high-quality user
experiences?

This paper aims to empower developers to harness the

potential of deep linking technology for creating seamless,

personalized, and engaging user experiences across a wide

range of Android devices and versions

* Corresponding author: E-mail: 1dhrutiranjan2000@gmail.com,

 2thiyagu.phd@gmail.com

1M.Sc. Computer Science (Cyber Security), Rajiv Gandhi National Institute
of Youth Development, Sriperumbudur, Tamil Nadu, India.

2Associate Professor & Head, Department of Computer Science (Cyber
Security), Rajiv Gandhi National Institute of Youth Development,
Sriperumbudur, Tamil Nadu, India.

www.shcpub.edu.in

http://www.shcpub.edu.in/
mailto:1dhrutiranjan2000@gmail.com
http://www.shcpub.edu.in/

Dhruti Ranjan Mohanty et al. | J. Computing & Int. Systems (2023) 329–336

www.shcpub.edu.in

II BASIC CONCEPTS OF DEEP LINK

Deep linking, which enables users to immediately access
particular material within an app, was consequently included
in Android applications. Deep linking makes it unnecessary
for consumers to go through many stages and gives them
immediate access to the material they want. It may be started
from a variety of places, including websites, emails, texts, and
other apps. User experience is improved through deep links,
which open the related app and direct users to the necessary
material. Deep linking improvements have improved how
seamlessly various programs integrate with one another. Due
to the possibility for cross-app communication, deep links
inside one app can launch certain activities or visit specific
websites. Deep linking increases app discoverability by
making deep connections shareable across several platforms.
Deep linking also has the benefit of enabling personalized
experiences within apps, which increases engagement and
personalisation. Deep linking can be implemented uniformly
across a variety of platforms and devices, although
fragmentation makes this difficult. Deep connections must
continue to work after app upgrades or structural changes,
which adds complexity to maintenance. To solve security
concerns connected to deep linking, appropriate procedures
for authentication and permission are required. Deep linking
may expose users to security threats including unauthorized
access and URL spoofing. If deep links are not deployed
securely, user information may be compromised due to data
leakage. Users need to be made aware of the dangers and
developers must encourage thorough link authenticity
checks. Deep linking has transformed how consumers engage
with Android apps, despite these restrictions and security
worries. In addition to fostering seamless app integration, it
has enhanced user experience and app discoverability.
Developers now depend on deep linking as a key technique
for increasing engagement and offering individualized
experiences. Deep linking is anticipated to develop further as
technology advances, overcoming constraints and security
issues. In the contemporary digital world, mobile
applications have a big influence on every part of our lives.
Android has emerged as the top platform among the several
mobile operating systems, grabbing a sizable portion of the
market. As they have developed over time to improve user
experience and allow seamless connection with other apps
and services, Android applications now offer a wide variety
of features. Deep linking is one such innovation that has
transformed how people interact with apps and information
on Android devices. Deep links connect a specific link to a
specific piece of content or feature within the app by using a
unique URL structure or URI (uniform resource identifier).
The operating system detects a deep link when a user clicks
on it and sends them to the appropriate app content. Since
2008, both iOS and Android have supported the most popular
deep link. The mobile OS can register URI schemes with an
app during installation if the programme wishes to be
launched from the web. The format can vary depending on
the platform or app. For example:

<scheme>://<host>/<path>?<query-parameters>. As a
result, the app is able to register and manage particular
URLs that are activated from either inside or outside the
app. The custom URL scheme often begins with a
distinctive identifier selected by the app developer,such as
“myapp://” or “mycustomscheme://”. This type of URL

launches or comes to the foreground when it is clicked or
triggered, enabling the connected app to manage and
process the particular URL. But the problem with this
scheme URL is that any other app or malicious app can
register the same scheme and trick you into opening
their app. As a result, they can steal your information.
To address this problem, the Intent URL in 2013 and the
App Link in 2015 came into picture. (a) Intent URL: It is
limited to Android. Websites should call deep links in
accordance with the intent URL, which is defined. In order
to prevent misunderstanding, Intent URL includes the
target app identification (i.e., package name) in the
argument directly rather than invoking “myapp://path1”.
(b) App Link: Comparing App Link to conventional
scheme URLs, you can see an improvement in security.
App Link employs domain verification, which
necessitates hosting particular JSON metadata files on the
website connected to the app, to establish the
connection between a domain and an app. By ensuring
that the programme only handles URLs from recognised
domains, this verification lowers the possibility of
spoofing or harmful usage. In some circumstances, the
system may ask the user to approve the action when an
app attempts to handle an app link URL for the first time.
This adds an additional layer of protection and prevents
deep connections from being handled by unintentionalor
unauthorised apps. The “autoVerify” element found in the
app’s manifest gives App Link users a way to validate
URLs. In order to avoid hijacking or manipulation, this
guarantees that the URLs linked to the app are routinely
checked.

III RELATED WORK

Deep linking is a powerful technology that allows users to
seamlessly navigate from a website or other apps directly
to specific content within a mobile app. It greatly
enhances the user experience by bypassing the app’s
home screen and providing a more streamlined and
targeted interaction. However, the implementation of
deep linking is not without its challenges. One of the main
hurdles is compatibility across different mobile operating
systems. Android and iOS, for instance, have their own
distinct deep linking mechanisms, with android relying
on URI schemes and iOS favouring Universal Links. This
means that developers need to adopt different approaches
and strategies to support deep linking on both platforms.
Yifei Ma et al. [1] addressed Deep links are an essential
tool for supporting programmed execution at specified
app locations. By enabling users to go to specific areas or
features inside the app, the release of deep links for
applications is essential for enabling the programmable
execution of apps. This feature improves the user
experience and makes it possible to navigate the app
ecosystem without any interruptions.

Xiaoxing Liu et al. noted that the primary method for using
portable devices to access the Internet has evolved into a
mobile application (app) [2]. Accessing a particular
"content page" within an app necessitates navigating
through various action within the app from the landing
page. The navigation graph of Android apps can easily be
built using a dynamic approach. Yizheng Liang et al.

330

http://www.shcpub.edu.in/

Dhruti Ranjan Mohanty et al. | J. Computing & Int. Systems (2023) 329–336

www.shcpub.edu.in

addressed malicious URLs [3] that might accidentally or
knowingly be included in the code or resources of Android
applications. Researchers help preserve the security of the
app ecosystem, stop fraudulent activity, and increase user
confidence by discovering and reporting such URLs. Zhiqiang
Yang et al. [4] tried to find out the transmission of sensitive
data is secured or not, whether the transmission was
intended for the user or not from an Android app. It is more
likely to be user-initiated when a data-sharing feature is
started or when a user grants authorization for a particular
data transmission. Min Zhang et al. [5] focused on the
component hijacking problem, one type of vulnerability that
frequently affects Android applications. Attackers might use
these weaknesses to their advantage by exploiting insecure
applications, which can then leak private data and risk the
security of Android devices’ data. There are some reasons
why relying solely on developers to fix the vulnerabilities is
difficult. Elaine Chin et al. [6] analysed Android developers
lunching of a webpage inside an application with the help of
Web View. Web view and browser are two different things.
Although this sophisticated interaction makes it easier for
developers to support several platforms, it leaves
programmes vulnerable to attack. Liu F. et al. addressed the
subject of component hijacking [7] related to Android links,
especially deep links, which is the main problem of this paper.
The security issues associated with component hijacking, in
which bad actors leverage flaws in deep link processing to
lead users to unexpected or harmful app components, are
highlighted by the authors. Component hijacking may occur as
a result of incorrect deep link data validation, insufficient
permission checks, or insecure deep link user input handling.
De-Jun Wu et al. [8] addressed the possibility of malware
cases rising due to the open environment of Android and the
presence of third- party app stores. Researchers look for
unusual or harmful behaviour in the manifest file, such as a
high number of permissions or the inclusion of unidentified
or hidden components. The manifest file for Android apps
lists the permissions that are necessary. R. Dhaya et al. [9]
addressed security flaws that have increased as a result of the
growing use of Android-based applications, especially how
these applications will handle links. Malicious links can be
used to attack user devices, damage their security, and violate
their privacy. Because of this, there is a demand for efficient
static analysis approaches that can discover possible
weaknesses in how links are handled in Android applications.
Samuel Feldma et al. [10] focused on Android manifest files to
identify potential malicious behaviour and patterns. The
manifest’s defined intents and intent filters specify the
message-sending and receiving capabilities of components.
Determine the communication channels the programme uses
by analysing the intents and filters. Additionally, app
versioning can complicate matters as changes to the app’s
deep linking structure may render existing deep links invalid,
requiring careful handling and backward compatibility.
Another significant issue is how to handle fall back scenarios
when a user clicks on a deep link but doesn’t have the

corresponding app installed. In such cases, developers
need to provide alternative options, such as redirecting
the user to a mobile website or prompting them to install
the app [15]. Furthermore, there can be instances where
multiple apps on a device can handle a particular deep
link, leading to the need for intelligent routing logic to
determine which app should be launched based on user
preferences or predefined rules. Maintaining app integrity
is another critical aspect [16]. Deep links may become out-
dated over time due to changes in the app’s structure or
modifications on the server side. Therefore, regular
validation checks are necessary to ensure that deep links
remain functional and up-to-date. Handling deep links
within the app itself requires careful attention, including
managing the app’s state upon deep link invocation,
retrieving the relevant data, and implementing security
measures to prevent unauthorized access. Moreover, app
store compliance is crucial, particularly with platforms
like the Apple App Store, which have stringent guidelines
for deep linking implementation. Adhering to these
guidelines ensures the app’s security and privacy
measures are upheld. To overcome these implementation
challenges, developers should follow best practices such as
thorough testing across various devices and scenarios,
clear documentation on deep linking implementation,
robust error handling mechanisms, and providing user
guidance on enabling or disabling deep link handling. By
considering these factors and employing effective
strategies, developers can successfully implement deep
linking and provide users with a seamless and enhanced
app experience.

IV ARCHITECTURE

In a mobile app, there are a number of architectural factors
to consider while constructing a WebView object. See Fig.
1. A WebView object is first created by the native mobile
app framework as the first step in the architecture.
Providing features including page loading, JavaScript
execution, and navigation, the WebView object serves as a
container for presenting online information. The required
parameters, including JavaScript enablement, cache
management, and the definition of additional WebView
attributes, are defined when it is created. It is then
necessary to load a URL into the WebView object that has
just been constructed. This entails launching a network
request to get the web data related to the given URL [17].
In order to handle HTTP/HTTPS requests, control cookies,
and cache resources, the WebView interacts with the
network layer [20]. The web content is then shown in the
WebView when the server’s response has been processed.
Handling WebView events is a part of the WebView
architecture as well. The completion of a page load,
navigation requests, form submissions, JavaScript call-
backs, or failures are examples of events. Event delegates
or listeners

331

http://www.shcpub.edu.in/

Dhruti Ranjan Mohanty et al. | J. Computing & Int. Systems (2023) 329–336

www.shcpub.edu.in

that catch these events are built into the WebView object.
Developers may respond appropriately since the WebView
automatically launches the call-backs or event handler in the
app logic when an event happens.

Fig. 1 WebView App Creation Framework

An event such as the conclusion of a page load may start
additional processes or modify the user interface. The
WebView component must be included in the app’s user
interface in order to display the WebView content. The
WebView object offers ways to present web material in a
specific layout or view. The UI is managed by the native
mobile app framework, which also places the WebView
component on the app’s screen and supports user interactions
with it. The rendered content of the WebView, including
HTML, CSS, pictures, and media, is shown to the user,
resulting in an intuitive surfing experience inside the app.

An activity is a key component of the user interface (UI) of
an application when developing for Android [19]. Users can
interact with the user interface on a single screen that it
depicts. Activities often correlate to a particular feature or
user process inside the programme, and they act as the entry
points for users to access various portions of an app. The
methods and callbacks in the activity class determine the
behaviour and lifespan of the activity. When an activity
becomes visible to the user but is not yet in the forefront, the
onStart() function is invoked. It is generally employed to
initiate or resume processes that ought to run only when an
action is both visible and interactive. The activity loses
attention and moves out of the foreground, which triggers the
call to the onPause() function. Prior to the activity going into
the background or maybe being deleted, there is a chance to
preserve data, release resources, or carry out other clean-up
tasks. See Fig. 2. The onStop() function is triggered when the
user’s view of the activity becomes invisible. It can be
invoked when an activity is either ending or starting a new

one. This function enables the execution of specific
actions or clean-up tasks that are relevant when an
activity is not visible. Upon termination of the activity, the

onDestroy() function is called.

Fig. 2 Android Activity Lifecycle

This provides an opportunity to release resources or

complete any necessary clean-up tasks before the activity

is completely removed from memory. Because the system

occasionally ends the activity without using this function, it

is not always called. When an activity is relaunched after

being stopped, the onRestart() function is invoked. It is a

sign that after briefly stopping, the action is starting to

move back into the forefront. Following this function are

the onStart() and onResume() methods. If an activity is

briefly deleted and then restored by the system, these

techniques are used to save and restore its state. You can

save any required data by using onSaveInstanceState()

prior to the activity being paused or restarted. When the

activity is being rebuilt, the function

onRestoreInstanceState() is invoked, enabling you to

restore the previously saved state. These lifecycle methods

include hooks that let you carry out particular activities at

various points in the lifespan of the activity. It’s essential to

comprehend and apply these techniques appropriately in

order to manage resources, save data, and guarantee a

smooth user experience while the activity switches

between various stages.

V. METHODOLOGY

Before going to create a web-view app make sure to install
and configure all the required software and tools. Choose a
development environment based on your preference, such
as Windows, macOS, or Linux. In this paper, Windows 10,
an i7- 4th generation with 16 GB of RAM and a 256GB SSD,
is used. Android Studio is used as IDE for app development.
It included Android SDK which has necessary tools,

332

http://www.shcpub.edu.in/

Dhruti Ranjan Mohanty et al. | J. Computing & Int. Systems (2023) 329–336

www.shcpub.edu.in

libraries, and emulators for testing. For testing and
communicating with the Android emulator, PowerShell is used
in this paper. Android Debug Bridge is another tool to connect
the Android emulator for security testing.

A. WebView App Creation

There are several steps involved in creating a web-view
application. The procedure is outlined in the following
paragraphs. Building a web-view app requires a URL. In this
paper a website is created and hosted on a free web hosting
platform called ‘netlify.com’. The URL used to create a web-
view app is ‘https://rgniyd.netlify.app’. To setup web- view in
your app, open the layout file, i.e., activity_main.xml, and add a
web-view element. Customise the web-view’s attributes as
needed. Open the MainActivity.java file and set up the web-
view configuration. Retrieve the web-view instance from the
layout file. Enable JavaScript and other web-view settings.
Then load the initial URL into the web-view. To handle
different web-view events, such as page loading, errors, and
navigation, implement a web-view client. In order to handle
certain URLs or deep links, override the
shouldOverrideUrlLoading function. Set up your app to handle
deep links or load only certain portions depending on the
URL that was loaded. To go through the web-view history, you
may optionally manage the Back-button behaviour using the
onBackPressed function. Declare an intent filter for the activity
that hosts the web-view. Make sure to add these three things
in the intent filter i.e. action, category and data in
AndroidManifest.xml file. Connect the Android device or set up
an emulator to run the app. For the execution of the
experiments conducted in this paper, a Nexus 5 smartphone
model with a 2.3GHz CPU and 2GB RAM, running Android OS 6,
was utilized. Build and run the app from Android Studio then
release it into the preferred location. Test the web-view
functionality by loading different web pages. Verify the deep
links in order to open it in the application and ensure proper
navigation.

B. Testing Deep Links

Perform a set of actions in order to test deep links. To
start, choose the deep link URL you wish to test. It must
follow the ‘scheme://host/path?parameter’ format [22]. As
soon as you receive the URL, set up a test environment by
making sure all the appropriate hardware, emulators, and
target apps are loaded and ready for testing. The next step is
to create the deep link by building the URL with the
appropriate parameters or route segments [23]. All necessary
query parameters and route segments must be included.
You have a few options for triggering the deep link once it
is prepared. If a deep link is available through a website or
another programme, one way to access it is to click on the
deep link URL. The URL should open in the desired
application when clicked. If you have access to the command-
line interface, using the ADB command is an additional choice.
You may transmit an intent with the deep link URL by
connecting the device or emulator and executing the
necessary ADB command. As an alternative, you may initiate
the deep link programmatically by utilising the appropriate
APIs if you have access to the app’s source code or are
constructing an app [24]. Once the deep connection has been
activated, watch to see how the destination app reacts. Make
sure the deep link opens the appropriate page or executes
the desired action in accordance with the deep link

URL. It’s important to investigate diverse possibilities
when testing. Test a variety of deep linkages, including
legitimate, improper, and edge instances. Check to see if
the app processes them properly and offers proper
feedback or error management. Testing the deep link
undergoes two different methods. One is static analysis
[11], and another one is dynamic analysis [12]. To
assess the potential risks related to exploiting deep links,
it is essential to consider the Android version on which the
app is operating. This can be determined by examining
the Android Manifest file to verify if the minSdkVersion is
31 or higher. By using ApkTool to decode the app and
analyse the Android Manifest file, you can quickly identify
whether deep links (with or without custom URL
schemes) are established [25]. Look for intent- filter
components in the Android Manifest file. Deep links must
be confirmed in order to be regarded as App
connections, even if they have the android:auto
Verify="true" property. Check for any potential setup
errors that can prevent thorough verification.

VI RESULTS & DISCUSSION

The goal of this research project was to develop an
Android-based Web-View app and assess its usability,
performance, and user interface. The Web- View app
provided users with a native app interface through which
they could browse and interact with online information.
The app’s WebView component was successfully included,
allowing the app’s UI to render web information. In order
to enable users to traverse through web pages, appropriate
navigation controls, such as back and advance buttons,
were developed. The programme let users to manually
input URLs or click links inside the WebView to load
online pages. To guarantee correct rendering and suitable
presentation, the app was tested with a variety of web sites
that contained various forms of material, including text,
photos, videos, and interactive components. The software
displayed online material properly, maintaining the
original design and visual aspects. Fig. 3 shows the
successful installation of the app in the Android emulator. I
store different links in the Android message box to check
the redirection. When the user clicks any one of these links
for the first time, the android will show an ambiguous
message (see in Fig. 4); once the user clicks on the ‘always’
button, they give permission for the links to open in the
specific application. We can see the successful launch of the
app from the specific link. And Fig. 5-6, shows that if an
app receives an attempt to open it with a scheme or host
that is not specified in the intent filter of the manifest file,
instead of launching the app, it redirects the request to the
web browser of the emulator.

333

http://www.shcpub.edu.in/

Dhruti Ranjan Mohanty et al. | J. Computing & Int. Systems (2023) 329–336

www.shcpub.edu.in

 Fig. 3 Install Application in Device

 Fig. 4 Ambiguous Message Pop-Up

 Fig. 5 Link with Different Host

VII CHALLENGES & BEST PRACTICES

In mobile marketing, deep linking is a crucial element that
promotes involvement, persistence, and profits. The need
to guarantee that deep links function properly in every
medium is actually more important than ever. However,
concerns with data transfer, security constraints, link
routing, device compatibility, app installation status, and
other factors may make its deployment more difficult [21].
To navigate these issues successfully, this section offers
detailed insights.

A. Platform and Device Compatibility

Device fragmentation is indeed a significant challenge
when it comes to deep linking, particularly in the context of
the Android and iOS platforms. This fragmentation
encompasses various aspects, including operating systems,
screen sizes, resolutions, and hardware capabilities, which
can make it difficult to ensure consistent and seamless
deep linking experiences across different devices. For
various platforms as well as for successive iterations of the
same operating system, deep links must be set individually.
Deep links may function flawlessly on one platform or OS
version but malfunction on another as a result of this
inconsistency. The two most popular mobile operating
systems, iOS and Android, each offer a unique deep linking
mechanism. Android uses Android App Links, but iOS
utilises Universal Links.

These weren’t always the norm, though. Prior to Android
6.0 Marshmallow, deep linking in Android mostly utilised
unique URL schemes. But this presented a number of
problems, including the possibility of URL scheme issues if
numerous apps utilised the same scheme. To solve this,
Android added Android App URLs in version 6.0, allowing
URLs that are particular to an app to open instantly in that
app, provided that app is installed. If an app enables
Android App Links and is installed on the user’s device, for
instance, clicking a link in an email that begins with
‘https://www.rgniyd.com/’ will launch the app
immediately. Maintaining compatibility across various
Android versions presented a new problem for app
developers with the advent of Android App Links. Although
Android App Links are more dependable and secure,
Android versions older than 6.0 do not support them. This
indicates that in order to enable deep linking on these
versions, programmes hoping for broad compatibility still
need to use the earlier custom URL scheme technique.
Developers use a variety of techniques to overcome the
obstacles, including integrating contemporary Android
programme Links or iOS Universal Links as well as unique
URL schemes into your programme. This will allow your
app to fall back to the specific URL scheme on earlier
versions of the device while still using the better technique
on devices that support it. Make sure your deep
connections function properly in various settings by
thoroughly testing them on a range of hardware and OS
versions. In your testing matrix, incorporate both recent
and historical releases of Android and iOS.

334

http://www.shcpub.edu.in/

Dhruti Ranjan Mohanty et al. | J. Computing & Int. Systems (2023) 329–336

www.shcpub.edu.in

B. App Installation Status

The status of user installed the app or not can have a big
impact on the behaviour of deep links. Deep links that point to
a web browser or app store instead of the programme itself, if
the app isn’t installed, may impede the user’s progress.
Deferred deep links are one way for marketers to get around
this problem. Although the programme must initially be
installed, deferred deep links enable users to be routed to
specific information. Once the app is installed, they save the
data sent through the link and direct the user to the desired
place. When a user interacts with a deep link, the term ‘app
installation status’ refers to whether or not the user has your
app loaded on their device. Depending on whether your app is
already installed or not, numerous events might happen when
a user clicks on a deep link. If installed, the deep link will open
the appropriate in- app content immediately. If not, the link
will often send the user to the app store where they may
download your software, breaking the smooth user experience
that deep linking is meant to offer. Link routing may be
impacted by your app’s status on a user’s device, including
whether it is installed, uninstalled, or operating in the
background. It can be technically difficult to handle these cases
effectively since each condition demands a separate routing
path. Deferred deep linking implementation is a two- step
procedure that involves both your marketing team and the
developers of your programme. Your marketing team must
comprehend the customer path and make plans for how to
employ postponed deep links successfully. Deferred deep
connections must work as planned across all platforms and
devices, thus your developers must simultaneously include the
technology into your programme.

C. Data Transmission Issue

Data transmission across deep networks may be a challenging
operation. There may be a number of problems that prevent
the data from going where it should or from being properly
processed by the app. The data sent over a deep link must be
accurately interpreted by the app. However, problems like
improper data formatting or unknown special characters
might lead to processing failures and invalidate the data. It
might happen that the information added to a deep link is
unreliable or inaccurate. Technical problems or mistakes in
the deep link generation process might be to blame for this.
When there are problems with data transfer, the user
experience may suffer greatly. The personalised experience
you had in mind might not be realised, or users might not be
sent to the desired area inside the app. This can make users
less engaged and aggravated, which might affect conversion
rates and general app performance.

Maintain open channels of communication, include them in
the planning process, and solicit their opinions on link routing
tactics. To discover and resolve any possible link routing
issues, test your deep connections across a variety of devices,
operating systems, and app states. The marketing and QA
teams should work together to make sure that the user
experience supports your marketing objectives.

D. Security Restrictions

As OS makers take methods to stop harmful programmes
from abusing deep links, security constraints may have an
influence on deep linking. The user experience may be

impacted by these restrictions by way of extra prompts.
Following recommended deep linking procedures, such as
making sure your website association files are properly
configured and informing users as to why particular
prompts may occur, will assist to prevent these problems
[14]. Before being routed from a deep link to an app on
various platforms, users are prompted to confirm. This
extra step might obstruct the user’s trip and perhaps affect
conversion rates. Certain data cannot be sent through deep
networks to reduce the threat of data breaches. The degree
of customised service you may offer may be impacted by
this. Contextual deep connections enable developers to
provide consumers with a much more individualised and
focused app experience immediately when they launch an
app. Developers may use these connections to create
features that send customers right to a unique welcome
page after downloading or let them instantly upload a
coupon. Additionally, they make it possible for marketers
to compile data on the effectiveness of marketing
initiatives and advertising campaigns.

VIII CONCLUSION & FUTURE WORK

Deep links are now a crucial component of creating
modern mobile apps since they offer a smooth and
practical approach for users to access particular app
information. Deep links enable users to access the app’s
content directly from outside sources like websites, emails,
or other applications by linking certain app screens or
actions to specific URLs. Deeplinks’ correctness and
operation are ensured through thorough testing, providing
a positive user experience. The establishment of deep links
is an essential component of app development. Developers
may make it simple for users to access particular material
or carry out particular activities by specifying and tying
deep links to specific app screens or actions. The deep link
URLs must be registered in the app’s manifest file, intent
filters must be set up, and the app must handle incoming
deep link intents. Designing a coherent and relevant URL
structure is crucial for deep link deployment. It should give
a direct route to particular screens or activities and
represent the hierarchy of the app’s content. The user
experience is enhanced by a well- designed URL structure
that enables consumers to comprehend the deep link’s
purpose. To handle deep link intents, the app’s manifest
file’s intent filters must be properly configured. The host
names, routes, and schemes that the app may handle are
specified by the intent filters. Developers may make sure
that the app reacts correctly when a deep link is opened by
specifying intent filters. Deep links should direct visitors to
the appropriate app panels or activities. The incoming
deep link intents must be handled by developers, who must
then take the appropriate steps, such as launching a certain
activity or fragment or carrying out a particular operation
based on the deep link data. Testing is necessary to
guarantee proper operation, check deep link data, manage
edge situations, and deliver a consistent user experience
across all devices and circumstances. Deep connections
may be used to increase app usage, boost user engagement,
and boost user happiness by developers when they build
and test them properly.

335

http://www.shcpub.edu.in/

Dhruti Ranjan Mohanty et al. | J. Computing & Int. Systems (2023) 329–336

www.shcpub.edu.in

At the moment, deep links are usually defined statically in the
manifest file of the app. In the future, apps could be able to
create deep connections on the fly based on the context or
preferences of the user thanks to improved dynamic deep
linking capabilities. Because of this, deeper connection
experiences might be more individualised and contextual. The
security of deep link interactions is essential because they may
provide access to sensitive information or open up app
functionality. Future work may concentrate on enhancing
security controls for deep link handling, including safeguards
for user privacy, procedures for secure deep link source
validation, and prevention of harmful deep link assaults.
Establishing universal standards for deep link structures,
naming conventions, and metadata formats could simplify
deep link implementation and improve interoperability
between apps and platforms. This would make it easier for
developers to adopt and integrate deep linking capabilities
into their apps.

XI REFERENCES

[1]. Yifei Ma et al., “Aladdin: Automating release of android deep links to in-
app content”. In 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), pages 139–140, Buenos
Aires, 2017.

[2]. Yifei Ma, Xiaoxing Liu, Rui Du, Zhiqiang Hu, Yun Liu, Min Yu, and
Guangtai Huang, “Droidlink: Automated generation of deep links for
android apps”. arXiv preprint arXiv:1605.0692, 2016.

[3]. Yizheng Liang and Xiaodong Yan002C “Using deep learning to detect
malicious urls”. In 2019 IEEE International Conference on Energy
Internet (ICEI), pages 487–492, 2019.

[4]. Zhiqiang Yang, Ming Yang, Yanchao Zhang, Guofei Gu, Peng Ning, and
Xiaofeng Steve Wang, “Appintent: Analyzing sensitive data transmission
in android for privacy leakage detection”. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security, New
York, NY, USA, 2013. Association for Computing Machinery.

[5]. Min Zhang and Heng Yin, “Appsealer: Automatic generation of
vulnerability specific patches for preventing component hijacking
attacks in android applications”. In Network and Distributed System
Security Symposium, 2014.

[6]. Elaine Chin and David Wagner, “Bifocals: Analyzing webview
vulnerabilities in android applications”. In Proceedings of the 7th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
University of California, Berkeley, USA, 2014.

[7]. Liu F., Wang C., Pico A., Yao D., and Wang G., “Measuring the insecurity of
mobile deep links of android”. In Proceedings of the USENIX Conference
on Security Symposium., 2017.

[8]. De-Jun Wu, Chen-Hung Mao, Te-En Wei, Hao-Ming Lee, and Kuo-Pei Wu.,
“Droidmat: Android malware detection through manifest and api calls
tracing”. In 2012 Seventh Asia Joint Conference on Information
Security, pages 62–69, Tokyo, Japan, 2012.

[9]. R. Dhaya and M. Poongodi., “Detecting software vulnerabilities in
android using static analysis”. In 2014 IEEE International Conference on
Advanced Communications, Control and Computing Technologies, pages
915–918, Ramanathapuram, India, 2014.

[10]. Samuel Feldman, David Stadther, and Bin Wang., “Manilyzer: Automated
android malware detection through manifest analysis”. In 2014 IEEE
11th International Conference on Mobile Ad Hoc and Sensor Systems,
pages 767–772, Philadelphia, PA, USA, 2014.

[11]. Brian Chess and Gary McGraw., “Static analysis for security”. IEEE
Security & Privacy, 2(6):76–79, November– December 2004.

[12]. Hossain Shahriar, Kun Qian, Md Anwarul Islam Talukder, David Lo, and
Nirav Patel., “Mobile software security with dynamic analysis”. In 2018
IEEE 23rd Pacific Rim International Symposium on Dependable
Computing (PRDC), pages 223–224, Taipei, Taiwan, 2018.

[13]. Redfox Security Website Available:
https://redfoxsec.com/blog/exploiting-android-webview-
vulnerabilities/

[14]. Deep Link Exploitation: Introduction & Open/unvalidated
 Redirection. Available:
https://medium.com/mobis3c/deep-link-exploitation-
introduction- open-unvalidated-redirection-b8344f00b17b

[15]. Liu, F., Cai, H., Wang, G., Yao, D. D., Elish, K. O., And Ryder, B. G., “MR-
Droid: A scalable and prioritized analysis of inter-app
communication risks”. In Proc. of MoST (2017).

[16]. Daoyuan Wu, Yao Cheng, Debin Gao, Yingjiu Li, and Robert H. Deng.
2018. SCLib: A Practical and Lightweight Defense against
Component Hijacking in Android Applications. In Proceedings of
the Eighth ACM Conference on Data and Application Security and
Privacy (CODASPY '18). Association for Computing Machinery, New
York, NY, USA, 299–306.

[17]. P. Gadient, M. Ghafari, M. -A. Tarnutzer and O. Nierstrasz, "Web APIs
in Android through the Lens of Security," 2020 IEEE 27th
International Conference on Software Analysis, Evolution and
Reengineering (SANER), London, ON, Canada, 2020, pp. 13-22.

[18]. Y. Liu, L. Li, P. Kong, X. Sun and T. F. Bissyandé, "A First Look at
Security Risks of Android TV Apps," 2021 36th IEEE/ACM
International Conference on Automated Software Engineering
Workshops (ASEW), Melbourne, Australia, 2021, pp. 59-64.

[19]. A. Mendoza and G. Gu, "Mobile Application Web API
Reconnaissance: Web-to-Mobile Inconsistencies & Vulnerabilities,"
2018 IEEE Symposium on Security and Privacy (SP), San Francisco,
CA, USA, 2018, pp. 756-769.

[20]. A. Possemato and Y. Fratantonio, "Towards HTTPS Everywhere on
Android: We Are Not There Yet," in Proceedings of the 29th USENIX
Security Symposium (USENIX Security 20), August 2020, pp. 343-
360.

[21]. Yutian Tang, Yulei Sui, Haoyu Wang, Xiapu Luo, Hao Zhou, and
Zhou Xu. 2020. All your app links are belong to us: understanding
the threats of instant apps based attacks. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2020). Association for Computing Machinery, New York,
NY, USA, 914–926.

[22]. Exploiting Deep Links in Android - Part 1. Available:
https://inesmartins.github.io/exploiting-deep-links-in-android-
part1/index.html

[23]. Exploiting Deep Links in Android - Part 2. Available:
https://inesmartins.github.io/exploiting-deep-links-in-android-
part-2/index.html

[24]. Testing Deep Links. Available:
https://mas.owasp.org/MASTG/tests/android/MASVS-
 PLATFORM/MASTG-TEST-0028/

[25]. Best practices for Deeplinking in Android. Available:
https://proandroiddev.com/best-practices-for-deeplinking-in- android-
1dc1ea060c0c

336

http://www.shcpub.edu.in/
https://redfoxsec.com/blog/exploiting-android-webview-vulnerabilities/
https://redfoxsec.com/blog/exploiting-android-webview-vulnerabilities/
https://medium.com/mobis3c/deep-link-exploitation-introduction-open-unvalidated-redirection-b8344f00b17b
https://medium.com/mobis3c/deep-link-exploitation-introduction-open-unvalidated-redirection-b8344f00b17b
https://medium.com/mobis3c/deep-link-exploitation-introduction-open-unvalidated-redirection-b8344f00b17b
https://inesmartins.github.io/exploiting-deep-links-in-android-part1/index.html
https://inesmartins.github.io/exploiting-deep-links-in-android-part1/index.html
https://inesmartins.github.io/exploiting-deep-links-in-android-part1/index.html
https://inesmartins.github.io/exploiting-deep-links-in-android-part-2/index.html
https://inesmartins.github.io/exploiting-deep-links-in-android-part-2/index.html
https://mas.owasp.org/MASTG/tests/android/MASVS-PLATFORM/MASTG-TEST-0028/
https://mas.owasp.org/MASTG/tests/android/MASVS-PLATFORM/MASTG-TEST-0028/
https://proandroiddev.com/best-practices-for-deeplinking-in-
https://proandroiddev.com/best-practices-for-deeplinking-in-android-1dc1ea060c0c
https://proandroiddev.com/best-practices-for-deeplinking-in-android-1dc1ea060c0c

